Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266578
We used two-photon microscopy to study the role of ensembles of cerebellar molecular layer interneurons (MLIs) in a go-no go task where mice obtain a sugar water reward. In order to begin understanding the circuit basis of our findings in changes in lick behavior with chemogenetics in the go-no go associative learning olfactory discrimination task we generated a simple computational model of MLI interaction with PCs.
Reference:
1 . Ma M, Futia GL, De Souza FM, Ozbay BN, Llano I, Gibson EA, Restrepo D (2020) Molecular layer interneurons in the cerebellum encode for valence in associative learning Nat Commun . [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum; Mouse;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Detailed Neuronal Models;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron stellate GABA cell; GabaA; AMPA; Gaba; Glutamate;
/
MaEtAl2020
README.html
bkpkj.mod *
cad.mod *
cadiff.mod *
cae.mod *
cap2.mod *
captain.mod *
cat.mod *
cha.mod *
erg.mod *
gkca.mod *
Golgi_Ca_LVA.mod *
Golgi_KA.mod *
Golgi_KV.mod
Golgi_Na.mod *
hpkj.mod *
k23.mod *
ka.mod *
kc3.mod *
kd.mod *
kdyn.mod *
khh.mod *
km.mod *
kpkj.mod *
kpkj2.mod *
kpkjslow.mod *
kv1.mod *
leak.mod *
lkpkj.mod *
myexchanger.mod *
myexchangersoma.mod *
mypump.mod *
mypumpsoma.mod *
nadifl.mod *
narsg.mod *
newnew.mod *
pump.mod *
10480.tmp
2_compartment_template.hoc
full.ses *
lesbos.ses *
mosinit.hoc
mosinit_PC_SC_SminusCNO.hoc
mosinit_PC_SC_SminusSaline.hoc
mosinit_PC_SC_SplusCNO.hoc
mosinit_PC_SC_SplusSaline.hoc
PC_alx.swc
PF_template.hoc
Plot_results.m
SC_morphology.hoc
SC_template.hoc
SC_withoutaxon.swc
screenshot.png
                            
begintemplate StellateCell


public soma, dendrite, nclist
public x, y, z
public Esynapse, Isynapse

//load_file("nrngui.hoc")
//nrncontrolmenu()

//counting spikes
public spiketimes,spikecount
objref spiketimes,spikecount

public voltagem
objref voltagem

objectvar nclist
objectvar Esynapse, Isynapse


public position



create soma
create dendrite[96]


proc init() {

x = $1
y = $2
z = $3

//////////////////////////////////////////////////////////
//Open Morphology
/////////////////////////////////////////////////////////
xopen("SC_morphology.hoc")


//cell passive parameters

Vleak = -70  // to avoid spontaneous firing

fator  = 1.0   

// spiny dendrites

Cm_all = fator * 1.5 //uF/cm**2 Molineux et al., 2005
Rm_all = 20e3 // ohm*cm**2 Molineux et al., 2005
Ra_all = 115 // ohm*cm Roth and Hausser 2001
gL = fator*1./Rm_all // siemens/cm**2

forall {
	insert pas g_pas=gL Ra=Ra_all e_pas=Vleak cm=Cm_all
}

//soma (Rm divided by half)
Cm_soma = 1.5 //uF/cm**2 Molineux et al., 2005
Rm_soma = 20e3 // ohm*cm**2 Traub 91
Ra_soma = 115 // ohm*cm Roth and Hausser 2001
gL_soma = 1./Rm_soma // siemens/cm**2


soma {
	g_pas=gL_soma Ra=Ra_soma e_pas=Vleak cm=Cm_soma

	insert Golgi_Na
	insert Golgi_KV
	insert Golgi_KA
	insert Golgi_Ca_LVA
	
	ena = 60 // Masoli et al. 2015
     ek = -88 // Masoli et al. 2015


	gnabar_Golgi_Na= 100e-2 // (S/cm2)
	gkbar_Golgi_KV= 60e-2 // (S/cm2)

     Aalpha_n_Golgi_KV = 0.1 * -0.01 //(/ms-mV)
	Abeta_n_Golgi_KV = 0.1 * 0.125 //(/ms)

	gkbar_Golgi_KA= 5*2e-2 // (S/cm2)
	gca2bar_Golgi_Ca_LVA= 16*0.2e-2 // (S/cm2)
	
}


dendrite[95] {
Esynapse = new Exp2Syn(0.5)      //AMPAR
Esynapse.tau1=0.28 //ms rise time (Hausser and Roth, 1997)
Esynapse.tau2=1.23  //ms decay time (Hausser and Roth, 1997)
Esynapse.e=0       //mV reversal potential

Isynapse = new Exp2Syn(0.5)      //GABAaR 
Isynapse.tau1=1.8 //ms rise time
Isynapse.tau2=8.5  //ms decay time
Isynapse.e=-85       //mV reversal potential (Houston, 2009)

}  


//counting spikes
access soma
nclist=new List()

spiketimes=new Vector()
lastspikecount=0

voltagem=new Vector()

spikecount=new APCount(0.5)
spikecount.thresh=-20
spikecount.record(spiketimes)

//Saving Vm
voltagem.record(&v(0.5))

}


//Fabio´s stuff
proc position() {local i
  access soma 
for i = 0, n3d()-1 {
    pt3dchange(i, $1-x+x3d(i), $2-y+y3d(i), $3-z+z3d(i), diam3d(i))
  }
  x = $1  y = $2  z = $3
}

endtemplate StellateCell


// ------------------------------------
// Some global stuff. 
// ------------------------------------


celsius = 36 //temperature (Forrest, 2015)
v_init = -70.8421
dt = 0.01


//simulation parameters
tstop = 1000