Cerebellar Golgi cells, dendritic processing, and synaptic plasticity (Masoli et al 2020)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266806
The Golgi cells are the main inhibitory interneurons of the cerebellar granular layer. To study the mechanisms through which these neurons integrate complex input patterns, a new set of models were developed using the latest experimental information and a genetic algorithm approach to fit the maximum ionic channel conductances. The models faithfully reproduced a rich pattern of electrophysiological and pharmacological properties and predicted the operating mechanisms of these neurons.
Reference:
1 . Masoli S, Ottaviani A, Casali S, D'Angelo E (2020) Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput Biol 16:e1007937 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum golgi cell;
Channel(s): I Sodium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Neurotransmitter dynamics; Calcium dynamics;
Implementer(s): Masoli, Stefano [stefano.masoli at unipv.it];
Search NeuronDB for information about:  I Sodium;
/
Golgi_cell_2020
Morphology_1
mod_files
Cav12.mod *
Cav13.mod *
Cav2_3.mod *
Cav3_1.mod *
cdp5StCmod.mod *
GOLGI_Ampa_mossy_det_vi.mod *
GOLGI_Ampa_pf_aa_det_vi.mod *
GRC_CA.mod *
GRC_KM.mod *
Hcn1.mod *
Hcn2.mod *
Kca11.mod *
Kca22.mod *
Kca31.mod *
Kv11.mod *
Kv34.mod *
Kv43.mod *
Leak.mod *
Nav16.mod *
PC_NMDA_NR2B.mod *
                            
TITLE Cerebellum Granule Cell Model

COMMENT
        CaHVA channel
   
	Author: E.D'Angelo, T.Nieus, A. Fontana
	Last revised: 8.5.2000
ENDCOMMENT
 
NEURON { 
	SUFFIX GRC_CA 
	USEION ca READ eca WRITE ica 
	RANGE gcabar, ica, g, alpha_s, beta_s, alpha_u, beta_u 
	RANGE Aalpha_s, Kalpha_s, V0alpha_s
	RANGE Abeta_s, Kbeta_s, V0beta_s
	RANGE Aalpha_u, Kalpha_u, V0alpha_u
	RANGE Abeta_u, Kbeta_u, V0beta_u
	RANGE s_inf, tau_s, u_inf, tau_u 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
:Kalpha_s = 0.063 (/mV)  Checked!
:Kbeta_s = -0.039 (/mV) Checked!
:Kalpha_u = -0.055 (/mV) Checked!
:Kbeta_u = 0.012 (/mV) Checked!


	Aalpha_s = 0.04944 (/ms)
	Kalpha_s =  15.87301587302 (mV)
	V0alpha_s = -29.06 (mV)
	
	Abeta_s = 0.08298 (/ms)
	Kbeta_s =  -25.641 (mV)
	V0beta_s = -18.66 (mV)
	
	

	Aalpha_u = 0.0013 (/ms)
	Kalpha_u =  -18.183 (mV)
	V0alpha_u = -48 (mV)
		
	Abeta_u = 0.0013 (/ms)
	Kbeta_u =   83.33 (mV)
	V0beta_u = -48 (mV)

	v (mV) 
	gcabar= 0.00046 (mho/cm2) 
	eca = 129.33 (mV) 
	celsius = 30 (degC) 
} 

STATE { 
	s 
	u 
} 

ASSIGNED { 
	ica (mA/cm2) 
	s_inf 
	u_inf 
	tau_s (ms) 
	tau_u (ms) 
	g (mho/cm2) 
	alpha_s (/ms)
	beta_s (/ms)
	alpha_u (/ms)
	beta_u (/ms)
} 
 
INITIAL { 
	rate(v) 
	s = s_inf 
	u = u_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit 
	g = gcabar*s*s*u 
	ica = g*(v - eca) 
	alpha_s = alp_s(v)
	beta_s = bet_s(v)
	alpha_u = alp_u(v)
	beta_u = bet_u(v)
}
 
DERIVATIVE states { 
	rate(v) 
	s' =(s_inf - s)/tau_s 
	u' =(u_inf - u)/tau_u 
} 
 
FUNCTION alp_s(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	alp_s = Q10*Aalpha_s*exp((v-V0alpha_s)/Kalpha_s) 
} 
 
FUNCTION bet_s(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	bet_s = Q10*Abeta_s*exp((v-V0beta_s)/Kbeta_s) 
} 
 
FUNCTION alp_u(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	alp_u = Q10*Aalpha_u*exp((v-V0alpha_u)/Kalpha_u) 
} 
 
FUNCTION bet_u(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-20(degC))/10(degC))
	bet_u = Q10*Abeta_u*exp((v-V0beta_u)/Kbeta_u) 
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_s, b_s, a_u, b_u 
	TABLE s_inf, tau_s, u_inf, tau_u 
	DEPEND Aalpha_s, Kalpha_s, V0alpha_s, 
	       Abeta_s, Kbeta_s, V0beta_s,
               Aalpha_u, Kalpha_u, V0alpha_u,
               Abeta_u, Kbeta_u, V0beta_u, celsius FROM -100 TO 30 WITH 13000 
	a_s = alp_s(v)  
	b_s = bet_s(v) 
	a_u = alp_u(v)  
	b_u = bet_u(v) 
	s_inf = a_s/(a_s + b_s) 
	tau_s = 1/(a_s + b_s) 
	u_inf = a_u/(a_u + b_u) 
	tau_u = 1/(a_u + b_u) 
}