//--------------------------------------------------------------------
// Simulation of Phasic Activity
// Synapses Distributet in soma, dasal and perisomatc dendrites
// her without run, just to place synapses
// used with an increased nseg of 101 (run() reasonalble only for nseg <11)
//---------------------------------------------------------------------
// ------------Definition of Parameters -------------------------------
// --------------------------------------------------------------------
// Determining Parameters GABA ---------------------------
G_GABA = 0.000169 // synaptic weight according to miniature events
DECAY_GABA = 37
P_GABA = 0.18
ndend=107
ngabasyn = 107
gninputs = 2
// seed Values for random generator
seed_GABA = 1 // seed for random function
// ---------Definition of objects -------------------------------------
// --------------------------------------------------------------------
// Objects for Synapses ---------------------------------------------------------
objref gabasyn[ngabasyn] // Definition of synapse objects
// random function for localization of synapses
objref rand_gaba_loc
// random function for localization of synapses in which dendrite
objref rand_gaba_dend
// random function for synapses parameters
objref rand_gaba_t
// definition of Vectors for Gaba-Stimulation (t_vec = timestamps t_vecr = sorted timestamps, g_vec = rel conductance)
objref gabastim[ngabasyn], gaba_t_vec[ngabasyn], gaba_t_vecr[ngabasyn], synpulsegaba[ngabasyn]
// Start of Input generation -------------------------------------------
// Initialize Random Functions -----------
rand_gaba_dend = new Random(seed_GABA+4)
rand_gaba_t = new Random(seed_GABA+6)
//Define properties of random Function
rand_gaba_t.uniform(0, 1010101)
// generate Vectors --- (gniputs, aninputs defines number of inputs per synapse) ------
for i = 0, ngabasyn-1 {
gaba_t_vec[i] = new Vector(gninputs)
gaba_t_vecr[i] = new Vector(gninputs)
}
printf("\n Pos: ")
// Distribute GABA synapses -----------------------------------------------------------
// Distribute in soma and perisomatic dendrites
for k=0, 8 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
dend[0]{
gabasyn[k] = new gaba(0.2)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
for k=9, 17 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
dend[3]{
gabasyn[k] = new gaba(pos)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
for k=18, 26 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
dend[8]{
gabasyn[k] = new gaba(pos)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
for k=27, 35 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
dend[8]{
gabasyn[k] = new gaba(pos)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
for k=36, 44 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
dend[10]{
gabasyn[k] = new gaba(pos)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
for k=45, 53 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
apic[10]{
gabasyn[k] = new gaba(pos)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
for k=54, 62 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
apic[11]{
gabasyn[k] = new gaba(pos)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
for k=63, 71 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
apic[12]{
gabasyn[k] = new gaba(pos)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
for k=72, 80 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
apic[13]{
gabasyn[k] = new gaba(pos)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
for k=81, 89 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
apic[14]{
gabasyn[k] = new gaba(pos)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
for k=90, ndend-1 {
pos = rand_gaba_dend.uniform (0.0001, 0.999)
printf("%g = %g,",k, pos)
soma{
gabasyn[k] = new gaba(pos)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
printf("\n \n")