Coincident glutamatergic depolarization effects on Cl- dynamics (Lombardi et al, 2021)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266823
"... we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval..."
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2021) Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons PLOS Comp Bio
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Short-term Synaptic Plasticity; Synaptic Plasticity; Chloride regulation;
Implementer(s): Jedlicka, Peter [jedlicka at em.uni-frankfurt.de]; Kilb, Werner [wkilb at uni-mainz.de];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
_For Zip -Neuron-Models_AMPA-GABA
Fig3f-h_Ball-stick_AP_Effect
borgka.mod *
borgkm.mod *
cadiv.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
kahp.mod *
kdr.mod *
nahh.mod *
vecevent.mod *
cell_soma_dendrite.hoc
cell_soma_dendrite_AP.hoc
cell_soma_dendrite_bpAP.hoc
cell_soma_dendrite_HH.hoc
cell_soma_dendrite_VGCa.hoc
GABA-AMPA_BS_defined_Conditions_for Plots.hoc
GABA-AMPA_BS_Dif-gAMPA_Var-Cl.hoc
init_Cldif.hoc *
Isolated_Dendrite.ses *
start_GABA-AMPA_BS_Dif-gAMPA_Var-Cl.hoc *
start_GABA-AMPA_BS-AP_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-bpAP_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-HH_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-VGCa_Dif-gAMPA_Var-Cl.hoc
start_GABA-AMPA_BS-wo_Dif-gAMPA_Var-Cl.hoc *
start_single_GABA-AMPA.hoc
start_single_GABA-AMPA_AP.hoc
start_single_GABA-AMPA_HH.hoc
test_a.hoc *
                            
TITLE nahh 
: From Traub & Miles "Neuronal networks of the hippocampus" (1991)
: but m^3 instead of m^2
NEURON {
	SUFFIX nahh
	USEION na READ ena WRITE ina
	RANGE gnabar
	GLOBAL inf,tau
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	v (mV)
	celsius		(degC)
	gnabar=.300 	(mho/cm2)
	ena 		(mV)
}
STATE {
	m h
}
ASSIGNED {
	ina (mA/cm2)
	inf[2]
        tau[2]
}

INITIAL {
         mhn(v)
         m=inf[0]
         h=inf[1]
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ina = gnabar*m*m*m*h*(v - ena)
}

DERIVATIVE states {	
	mhn(v*1(/mV))
	m' = (inf[0] - m)/tau[0]
	h' = (inf[1] - h)/tau[1]
}


FUNCTION alp(v(mV),i) { LOCAL q10 :  order m,h
        v=v+65
	q10 = 3^((celsius - 30)/10)
	if (i==0) {
		alp = q10*.32*expM1(13.1-v, 4)
	}else if (i==1){
		alp = q10*.128*exp((17-v)/18)
	}
}

FUNCTION bet(v,i) { LOCAL q10 : order m,h
        v=v+65
	q10 = 3^((celsius - 30)/10)
	if (i==0) {
		bet = q10*.28*expM1(v-40.1,5)
	}else if (i==1){
		bet = q10*4/(exp((40.0-v)/5) + 1)
	}
}

FUNCTION expM1(x,y) {
	if (fabs(x/y) < 1e-6) {
		expM1 = y*(1 - x/y/2)
	}else{
		expM1 = x/(exp(x/y) - 1)
	}
}

PROCEDURE mhn(v) {LOCAL a, b 
	FROM i=0 TO 1 {
		a = alp(v,i)  
		b=bet(v,i)
		tau[i] = 1/(a + b)
		inf[i] = a/(a + b)
	}
}