//--------------------------------------------------------------------
// Simulation of a single GDP
//---------------------------------------------------------------------
// Used to stimulate a GDp for display
// ------------Definition of Parameters -------------------------------
// --------------------------------------------------------------------
// seed Values for random generator
seed_AMPA = 0 // seed for random function
seed_GABA = seed_AMPA+2
// Define Cl--Concentration
Cli = 50
// Determining Parameters GABA ---------------------------
G_GABA = 0.000789 // synaptic weight according to miniature events
DECAY_GABA = 37
P_GABA = 0.18
ngabasyn = 534
gninputs = 1 // number of inputs per synapse
// Determination Parameters AMPA ------------------------------------
G_AMPA = 0.000305 * 10
DECAY_AMPA = 11
nampasyn = 107 //Number of AMPA-Synapses // calculated was 107
aninputs = 1 // number of inputs per synapse
// Definition of various runtime parameters --------------------------
ndend=56 // Number of dendrites
tstop = 1500 // Duration
v_init = -60 // Initial voltage
dt = 0.01 // Step Interval in ms
// ---------Definition of objects -------------------------------------
// --------------------------------------------------------------------
// Objects for Synapses ---------------------------------------------------------
objref gabasyn[ngabasyn] // Definition of synapse objects
objref ampasyn[nampasyn]
// random function for localization of synapses
objref rand_ampa_loc, rand_gaba_loc
// random function for localization of synapses in which dendrite
objref rand_ampa_dend, rand_gaba_dend
// random function for synapses parameters
objref rand_gaba_t, rand_gaba_g
objref rand_ampa_t, rand_ampa_g
// definition of Vectors for Gaba-Stimulation (t_vec = timestamps t_vecr = sorted timestamps, g_vec = rel conductance)
objref gabastim[ngabasyn], gaba_t_vec[ngabasyn], gaba_t_vecr[ngabasyn], synpulsegaba[ngabasyn], gaba_g_vec[ngabasyn]
// definition of Vectors for AMPA-Stimulation
objref ampastim[nampasyn], ampa_t_vec[nampasyn], ampa_t_vecr[nampasyn], synpulseampa[nampasyn], ampa_g_vec[nampasyn]
// Start of Input generation -------------------------------------------
// Initialize Random Functions -----------
rand_ampa_loc = new Random(seed_AMPA+1)
rand_gaba_loc = new Random(seed_GABA+2)
rand_ampa_dend = new Random(seed_AMPA+3)
rand_gaba_dend = new Random(seed_GABA+4)
rand_ampa_t = new Random(seed_AMPA+5)
rand_ampa_g = new Random(seed_AMPA+6)
rand_gaba_t = new Random(seed_GABA+7)
rand_gaba_g = new Random(seed_GABA+8)
//Define properties of random Function
rand_gaba_t.normal(400, 9000)
rand_gaba_g.normal(1, 0.28) //rel variance of GABA according to results
rand_ampa_t.normal(500, 8500)
rand_ampa_g.normal(1, 0.26) //rel variance of AMPA according to results
// generate Vectors --- (gniputs, aninputs defines number of inputs per synapse) ------
for i = 0, ngabasyn-1 {
gaba_t_vec[i] = new Vector(gninputs)
gaba_t_vecr[i] = new Vector(gninputs)
gaba_g_vec[i] = new Vector(gninputs)
}
for i = 0, nampasyn-1 {
ampa_t_vec[i] = new Vector(aninputs)
ampa_t_vecr[i] = new Vector(aninputs)
ampa_g_vec[i] = new Vector(aninputs)
}
// Distribute GABA synapses -----------------------------------------------------------
for k=0, ngabasyn-1 {
pos = rand_gaba_loc.uniform(0,ndend-1)
pos2 = rand_gaba_dend.uniform (0.1, 0.5)
dend_0[pos]{
gabasyn[k] = new gaba(pos2)
gabasyn[k].tau1 = 0.1
gabasyn[k].tau2 = DECAY_GABA
gabasyn[k].P = P_GABA
}
}
// distribute AMPA synapses ------------------------------------------------------------------------
for k=0, nampasyn-1 {
pos = rand_ampa_loc.uniform(0,ndend-1)
pos3 = rand_ampa_dend.uniform (0.1, 0.5)
dend_0[pos]{
ampasyn[k] = new Exp2Syn(pos3)
ampasyn[k].tau1 = 0.1
ampasyn[k].tau2 = DECAY_AMPA
}
}
//-- Simulation starts here -----------------------------------------------------------------
//-------------------------------------------------------------------------------------------
forsec all {
cli0_cldif_CA3_NKCC1_HCO3 = Cli
cli_Start_cldif_CA3_NKCC1_HCO3 = Cli
cli_cldif_CA3_NKCC1_HCO3 = Cli
}
// 2a. Generate timestamps/conductances for GABA synapses --------------------------------------
for f=0, ngabasyn-1 {
for i=0, gninputs-1 {
t = rand_gaba_t.repick()
g = rand_gaba_g.repick()
gaba_t_vec[f].x[i]=t
gaba_g_vec[f].x[i]= abs(G_GABA*g)
}
}
for f=0, ngabasyn-1 {
gaba_t_vecr[f] = gaba_t_vec[f].sort()
}
// 2b. Generate timestamps/conductances for AMPA synapses --------------------------------------
for f=0, nampasyn-1 {
for i=0, aninputs-1 {
t = rand_ampa_t.repick()
g = rand_ampa_g.repick()
ampa_t_vec[f].x[i]=t
ampa_g_vec[f].x[i]=G_AMPA
}
}
for f=0, nampasyn-1 {
ampa_t_vecr[f] = ampa_t_vec[f].sort()
}
// 3. generate Vecstim-vectors from the sorted timestamp-vectors -------------------------------
for i=0, ngabasyn-1 {
gabastim[i] = new VecStim()
gabastim[i].play(gaba_t_vecr[i]) // GABA stimulator
}
for i=0, nampasyn-1{
ampastim[i] = new VecStim()
ampastim[i].play(ampa_t_vecr[i]) // AMPA stimulator
}
// 4. Play the Vecstim objects to the synapses ---------------------------------------------
for i=0, ngabasyn-1 {
synpulsegaba[i] = new NetCon(gabastim[i], gabasyn[i], 0, 0, gaba_g_vec[i].x[0])
} // GABA NetCon
for i=0, nampasyn-1 {
synpulseampa[i] = new NetCon(ampastim[i], ampasyn[i], 0, 0, ampa_g_vec[i].x[0])
}
// Ampa NetCon
// 6. Run Simulation --------------------------------------------------------
run()