Coincident glutamatergic depolarization effects on Cl- dynamics (Lombardi et al, 2021)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266823
"... we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval..."
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2021) Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons PLOS Comp Bio
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Short-term Synaptic Plasticity; Synaptic Plasticity; Chloride regulation;
Implementer(s): Jedlicka, Peter [jedlicka at em.uni-frankfurt.de]; Kilb, Werner [wkilb at uni-mainz.de];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
_For Zip -Neuron-Models_AMPA-GABA
Fig3a-d_Ball-Stick_var-tauAMPA
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
vecevent.mod *
cell_soma_dendrite.hoc *
GABA-AMPA_BS_var-tauAMPA_Var-Cl.hoc
GABA-AMPA_BS_var-tauAMPA_Var-Cl_gAMPAx10.hoc
init_Cldif.hoc *
Isolated_Dendrite.ses *
start_GABA-AMPA_BS_Var-tauAMPA_Var-Cl.hoc
start_GABA-AMPA_BS_Var-tauAMPA_Var-Cl_gAMPA-x10.hoc
                            
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[5]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
//{pwman_place(2022,912,1)}
{
save_window_ = new Graph(0)
save_window_.size(0,300,-75,-35)
scene_vector_[2] = save_window_
{save_window_.view(0, -75, 300, 40, 462, 12, 956.7, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addexpr("dend.v( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("dend.ecl( 0.5 )", 2, 1, 0.8, 0.9, 2)
}
{
xpanel("RunControl", 0)
v_init = -60
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 0
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 0.5
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 200
xvalue("t","t", 2 )
tstop = 200
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.025
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 40
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
screen_update_invl = 0.05
xvalue("Scrn update invl","screen_update_invl", 1,"", 0, 1 )
realtime = 1.45
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(24,144)
}
{
save_window_ = new Graph(0)
save_window_.size(0,300,10,50)
scene_vector_[3] = save_window_
{save_window_.view(0, 10, 300, 40, 462, 324, 961.2, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addexpr("dend.cli( 0.5 )", 1, 1, 0.8, 0.9, 2)
}

objectvar scene_vector_[1]
{doNotify()}