Coincident glutamatergic depolarization effects on Cl- dynamics (Lombardi et al, 2021)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266823
"... we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval..."
Reference:
1 . Lombardi A, Jedlicka P, Luhmann HJ, Kilb W (2021) Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons PLOS Comp Bio
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Short-term Synaptic Plasticity; Synaptic Plasticity; Chloride regulation;
Implementer(s): Jedlicka, Peter [jedlicka at em.uni-frankfurt.de]; Kilb, Werner [wkilb at uni-mainz.de];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
_For Zip -Neuron-Models_AMPA-GABA
Fig5_Ball-stick_temp-Rel
cldif_CA3_NKCC1_HCO3.mod *
gabaA_Cl_HCO3.mod *
vecevent.mod *
cell_soma_dendrite.hoc *
GABA-AMPA_BS_var-temp_rel_AMPA_Var-Cl.hoc
GABA-AMPA_BS_Var-temp_rel_AMPA_Var-Cl_essential_traces_high res.hoc
GABA-AMPA_BS_var-temp_rel_AMPA_Var-Cl_tauGABA-hand_AMPA-hand.hoc *
GABA-AMPA_BS_Var-temp_var-tauGABA_tauAMPA-37ms_Cli-25mM_long.hoc
GABA-AMPA_BS_Var-temp_var-tauGABA_tauAMPA-37ms_Cli-5mM_long.hoc
init_Cldif.hoc *
Isolated_Dendrite.ses *
start_GABA-AMPA_BS_var-temp_rel_AMPA_Var-Cl.hoc
start_GABA-AMPA_BS_Var-temp_rel_AMPA_Var-Cl_essential_traces_high res.hoc
start_GABA-AMPA_BS_var-temp_rel_AMPA_Var-Cl_tauGABA-hand_AMPA-hand.hoc
start_GABA-AMPA_BS_Var-temp_var-tauGABA_tauAMPA-37ms_Cli-25mM_long.hoc
start_GABA-AMPA_BS_Var-temp_var-tauGABA_tauAMPA-37ms_Cli-5mM_long.hoc
                            
// recall of Chloride Diffusion Model of Peter Jedlicka

forall {
    insert cldif_CA3_NKCC1_HCO3
      cli0_cldif_CA3_NKCC1_HCO3 = 30
      clo0_cldif_CA3_NKCC1_HCO3 = 133.5
      cli_cldif_CA3_NKCC1_HCO3= 30
      clo_cldif_CA3_NKCC1_HCO3=133.5
      cli_Start_cldif_CA3_NKCC1_HCO3 = 30

      hco3i0_cldif_CA3_NKCC1_HCO3 = 14.1
      hco3o0_cldif_CA3_NKCC1_HCO3 = 24
      hco3i_cldif_CA3_NKCC1_HCO3=14.1
      hco3o_cldif_CA3_NKCC1_HCO3=24
      hco3i_Start_cldif_CA3_NKCC1_HCO3 = 14.1

      celsius = 31
}


//define ionic concentrations
cli0_cl_ion = cli0_cldif_CA3_NKCC1_HCO3
clo0_cl_ion = clo0_cldif_CA3_NKCC1_HCO3
hco3i0_hco3_ion = hco3i0_cldif_CA3_NKCC1_HCO3
hco3o0_hco3_ion = hco3o0_cldif_CA3_NKCC1_HCO3