Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. 2021)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology 125:1501-1516 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
AckerAntic
misc
gflucts
mod
ampa.mod *
ca.mod *
Ca_HVA.mod *
Cad.mod *
cadyn.mod *
CaDynamics_E2.mod *
canin.mod *
CaT.mod *
gabaa.mod *
gabab.mod *
Gfluct.mod *
Gfluctp.mod *
Gfluctp_old.mod *
Gfluctp_old2.mod *
glutamate.mod *
h_kole.mod *
h_migliore.mod *
hin.mod *
Ih.mod *
IKsin.mod *
IL.mod *
kadist.mod *
kapin.mod *
kaprox.mod *
kBK.mod *
kctin.mod *
kdrin.mod *
kv.mod *
MyExp2SynBB.mod *
na.mod *
nafx.mod *
NMDA.mod
NMDAeee.mod *
PlateauConductance.mod *
SK_E2.mod *
vecstim.mod *
vmax.mod *
ghk.inc *
                            
COMMENT
26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
    Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal


na.mod

Sodium channel, Hodgkin-Huxley style kinetics.

Kinetics were fit to data from Huguenard et al. (1988) and Hamill et
al. (1991)

qi is not well constrained by the data, since there are no points
between -80 and -55.  So this was fixed at 5 while the thi1,thi2,Rg,Rd
were optimized using a simplex least square proc

voltage dependencies are shifted approximately from the best
fit to give higher threshold

Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu

tadj, the temperature adjustment was removed from instantaneous conductance term
in BREAKPOINT

steady-state inactivation was changed to more usual form: a/(a+b) and
inactivation time constant was significantly reduced to reflect recent data
from Kole, .... Stuart '08 Nat Neurosci.

Corey Acker, July 2008, Neuroscience, UConn Health Center

ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX na
	USEION na READ ena WRITE ina
	RANGE m, h, gna, gbar
	GLOBAL tha, thi1, thi2, qa, qi, qinf, thinf
	RANGE minf, hinf, mtau, htau
	GLOBAL Ra, Rb, Rd, Rg
	GLOBAL q10, temp, tadj, vmin, vmax, vshift
}

PARAMETER {
	gbar = 1000   	(pS/um2)	: 0.12 mho/cm2
:	vshift = -10	(mV)		: voltage shift (affects all)
	vshift = 0	(mV)		: voltage shift (affects all)

	tha  = -40 :-35.5 : -35	(mV)	: v 1/2 for act		(-42)
	qa   = 9	(mV)		: act slope
	Ra   = 0.182	(/ms)		: open (v)
	Rb   = 0.124	(/ms)		: close (v)

:	thi1  = -50	(mV)		: v 1/2 for inact
      thi1 = -65 (mV)
:	thi2  = -75	(mV)		: v 1/2 for inact
      thi2 = -65 (mV)
	qi   = 6	(mV)	        : inact tau slope
:	thinf  = -65	(mV)		: inact inf slope
	thinf  = -65	(mV)		: inact inf slope
	qinf  = 6.2	(mV)		: inact inf slope
:	Rg   = 0.0091	(/ms)		: inact (v)
	Rg   = 0.02	(/ms)		: inact (v)
	Rd   = 0.024	(/ms)		: inact recov (v)

	temp = 23	(degC)		: original temp
	q10 = 2.3			: temperature sensitivity

	v 		(mV)
	dt		(ms)
	celsius		(degC)
	vmin = -120	(mV)
	vmax = 100	(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
}

ASSIGNED {
	ina 		(mA/cm2)
	gna		(pS/um2)
	ena		(mV)
	minf 		hinf
	mtau (ms)	htau (ms)
	tadj
}


STATE { m h }

INITIAL {
	trates(v+vshift)
	m = minf
	h = hinf
}

BREAKPOINT {
        SOLVE states METHOD cnexp
:        gna = tadj*gbar*m*m*m*h : originally included tadj
        gna = gbar*m*m*m*h
	ina = (1e-4) * gna * (v - ena)
}

LOCAL mexp, hexp

DERIVATIVE states {   :Computes state variables m, h, and n
        trates(v+vshift)      :             at the current v and dt.
        m' =  (minf-m)/mtau
        h' =  (hinf-h)/htau
}

PROCEDURE trates(v) {


        TABLE minf,  hinf, mtau, htau
	DEPEND  celsius, temp, Ra, Rb, Rd, Rg, tha, thi1, thi2, qa, qi, qinf

	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable == 1

:        tinc = -dt * tadj

:        mexp = 1 - exp(tinc/mtau)
:        hexp = 1 - exp(tinc/htau)
}


PROCEDURE rates(vm) {
        LOCAL  a, b

	a = trap0(vm,tha,Ra,qa)
	b = trap0(-vm,-tha,Rb,qa)

        tadj = q10^((celsius - temp)/10)

	mtau = 1/tadj/(a+b)
	minf = a/(a+b)

		:"h" inactivation

	a = trap0(-vm,-thi1,Rd,qi)
	b = trap0(vm,thi2,Rg,qi)
	htau = 1/tadj/(a+b)
:	hinf = 1/(1+exp((vm-thinf)/qinf))
      hinf = a/(a+b)
}


FUNCTION trap0(v,th,a,q) {
	if (fabs(v/th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}