Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. accepted)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology (accepted)
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
AckerAntic
mod
ampa.mod *
ca.mod *
Ca_HVA.mod *
Cad.mod *
cadyn.mod *
CaDynamics_E2.mod *
canin.mod *
CaT.mod *
gabaa.mod *
gabab.mod *
Gfluctp.mod *
glutamate.mod *
h_kole.mod *
h_migliore.mod *
hin.mod *
Ih.mod *
IKsin.mod *
IL.mod *
kadist.mod *
kapin.mod *
kaprox.mod *
kBK.mod *
kctin.mod *
kdrin.mod *
kv.mod *
MyExp2SynBB.mod *
na.mod *
nafx.mod *
NMDA.mod *
NMDAeee.mod *
NMDAmajor.mod
PlateauConductance.mod *
SK_E2.mod *
vecstim.mod *
vmax.mod *
ghk.inc *
                            
COMMENT
26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
    Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal

kv.mod

Potassium channel, Hodgkin-Huxley style kinetics
Kinetic rates based roughly on Sah et al. and Hamill et al. (1991)

Author: Zach Mainen, Salk Institute, 1995, zach@salk.edu

tadj, the temperature adjustment was removed from instantaneous conductance term
in BREAKPOINT by Corey Acker
	
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX kv
	USEION k READ ek WRITE ik
	RANGE n, gk, gbar
	RANGE ninf, ntau
	GLOBAL Ra, Rb
	GLOBAL q10, temp, tadj, vmin, vmax
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

PARAMETER {
	gbar = 5   	(pS/um2)	: 0.03 mho/cm2
	v 		(mV)
								
	tha  = 25	(mV)		: v 1/2 for inf
	qa   = 9	(mV)		: inf slope		
	
	Ra   = 0.02	(/ms)		: max act rate
	Rb   = 0.002	(/ms)		: max deact rate	

	dt		(ms)
	celsius		(degC)
	temp = 23	(degC)		: original temp 	
	q10  = 2.3			: temperature sensitivity

	vmin = -120	(mV)
	vmax = 100	(mV)
} 


ASSIGNED {
	a		(/ms)
	b		(/ms)
	ik 		(mA/cm2)
	gk		(pS/um2)
	ek		(mV)
	ninf
	ntau (ms)	
	tadj
}
 

STATE { n }

INITIAL { 
	trates(v)
	n = ninf
}

BREAKPOINT {
        SOLVE states METHOD cnexp
:	gk = tadj*gbar*n : originally included tadj
      gk = gbar*n
	ik = (1e-4) * gk * (v - ek)
} 



DERIVATIVE  states {   :Computes state variable n 
        trates(v)      :             at the current v and dt.
        n' =  (ninf-n)/ntau
}

PROCEDURE trates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
        
        TABLE ninf, ntau
	DEPEND  celsius, temp, Ra, Rb, tha, qa
	
	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable_hh == 1


:        tinc = -dt * tadj
:        nexp = 1 - exp(tinc/ntau)

}


PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.

        a = Ra * (v - tha) / (1 - exp(-(v - tha)/qa))
        b = -Rb * (v - tha) / (1 - exp((v - tha)/qa))

        tadj = q10^((celsius - temp)/10)
        ntau = 1/tadj/(a+b)
	ninf = a/(a+b)
}