Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. accepted)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology (accepted)
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
Neymotin
mod
ar_traub.mod *
cadad.mod *
cadyn.mod *
cagk.mod *
cal_mh.mod *
cal_mig.mod *
can_mig.mod *
canin.mod *
cat_mig.mod *
cat_traub.mod *
catcb.mod *
gabab.mod *
h_BS.mod *
h_harnett.mod
h_kole.mod *
h_migliore.mod *
HCN1.mod *
hin.mod *
IC.mod *
ican_sidi.mod *
IKsin.mod *
kadist.mod *
kap_BS.mod *
kapcb.mod *
kapin.mod *
kBK.mod *
kctin.mod *
kdmc_BS.mod *
kdr_BS.mod *
kdrin.mod *
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod *
nafx.mod *
nap_sidi.mod *
nax_BS.mod *
savedist.mod *
vecstim.mod *
ghk.inc *
misc.h
parameters.multi *
                            
TITLE Calcium low threshold T type current for RD Traub, J Neurophysiol 89:909-921, 2003

COMMENT

	Implemented by Maciej Lazarewicz 2003 (mlazarew@seas.upenn.edu)

ENDCOMMENT

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
}
 
NEURON { 
	SUFFIX catt
	NONSPECIFIC_CURRENT i   : not causing [Ca2+] influx
	RANGE gbar, i
}

PARAMETER { 
	gbar = 0.0 	(mho/cm2)
	v eca 		(mV)  
}
 
ASSIGNED { 
	i 		(mA/cm2) 
	minf hinf 	(1)
	mtau htau 	(ms) 
}
 
STATE {
	m h
}

BREAKPOINT { 
	SOLVE states METHOD cnexp
	i = gbar * m * m * h * ( v - 125 ) 
}
 
INITIAL { 
	minf  = 1 / ( 1 + exp( ( -v - 56 ) / 6.2 ) )
	mtau  = 0.204 + 0.333 / ( exp( ( v + 15.8 ) / 18.2 ) + exp( ( - v - 131 ) / 16.7 ) )
	hinf  = 1 / ( 1 + exp( ( v + 80 ) / 4 ) )
	if( v < -81 ) {
		htau  = 0.333 * exp( ( v + 466 ) / 66.6 )
	}else{
		htau  = 9.32 + 0.333 * exp( ( -v - 21 ) / 10.5 )
	}
	m  = minf
	h  = hinf
} 

DERIVATIVE states { 
	minf  = 1 / ( 1 + exp( ( -v - 56 ) / 6.2 ) )
	mtau  = 0.204 + 0.333 / ( exp( ( v + 15.8 ) / 18.2 ) + exp( ( - v - 131 ) / 16.7 ) )
	hinf  = 1 / ( 1 + exp( ( v + 80 ) / 4 ) )
	if( v < -81 ) {
		htau  = 0.333 * exp( ( v + 466 ) / 66.6 )
	}else{
		htau  = 9.32 + 0.333 * exp( ( -v - 21 ) / 10.5 )
	}
	m' = ( minf - m ) / mtau 
	h' = ( hinf - h ) / htau
}