Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. 2021)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology 125:1501-1516 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
AckerAntic
mod
ampa.mod *
ca.mod *
Ca_HVA.mod *
Cad.mod *
cadyn.mod *
CaDynamics_E2.mod *
canin.mod *
CaT.mod *
gabaa.mod *
gabab.mod *
Gfluctp.mod *
glutamate.mod *
h_kole.mod *
h_migliore.mod *
hin.mod *
Ih.mod *
IKsin.mod *
IL.mod *
kadist.mod *
kapin.mod *
kaprox.mod *
kBK.mod *
kctin.mod *
kdrin.mod *
kv.mod *
MyExp2SynBB.mod *
na.mod *
nafx.mod *
NMDA.mod *
NMDAeee.mod *
NMDAmajor.mod
PlateauConductance.mod *
SK_E2.mod *
vecstim.mod *
vmax.mod *
ghk.inc *
                            
:Comment :
:Reference : :		Reuveni, Friedman, Amitai, and Gutnick, J.Neurosci. 1993

NEURON	{
	SUFFIX Ca_HVA
	USEION ca READ eca WRITE ica
	RANGE gCa_HVAbar, gCa_HVA, ica 
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gCa_HVAbar = 0.00001 (S/cm2) 
}

ASSIGNED	{
	v	(mV)
	eca	(mV)
	ica	(mA/cm2)
	gCa_HVA	(S/cm2)
	mInf
	mTau
	mAlpha
	mBeta
	hInf
	hTau
	hAlpha
	hBeta
}

STATE	{ 
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gCa_HVA = gCa_HVAbar*m*m*h
	ica = gCa_HVA*(v-eca)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
	UNITSOFF
        if((v == -27) ){        
            v = v+0.0001
        }
		mAlpha =  (0.055*(-27-v))/(exp((-27-v)/3.8) - 1)        
		mBeta  =  (0.94*exp((-75-v)/17))
		mInf = mAlpha/(mAlpha + mBeta)
		mTau = 1/(mAlpha + mBeta)
		hAlpha =  (0.000457*exp((-13-v)/50))
		hBeta  =  (0.0065/(exp((-v-15)/28)+1))
		hInf = hAlpha/(hAlpha + hBeta)
		hTau = 1/(hAlpha + hBeta)
	UNITSON
}