Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. accepted)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology (accepted)
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
Hay
mod
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
h_migliore.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
SK_E2.mod *
SKv3_1.mod *
                            
:Reference :Colbert and Pan 2002
:comment: took the NaTa and shifted both activation/inactivation by 6 mv

NEURON	{
	SUFFIX NaTs2_t
	USEION na READ ena WRITE ina
	RANGE gNaTs2_tbar, gNaTs2_t, ina
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gNaTs2_tbar = 0.00001 (S/cm2)
}

ASSIGNED	{
	v	(mV)
	ena	(mV)
	ina	(mA/cm2)
	gNaTs2_t	(S/cm2)
	mInf
	mTau
	mAlpha
	mBeta
	hInf
	hTau
	hAlpha
	hBeta
}

STATE	{
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gNaTs2_t = gNaTs2_tbar*m*m*m*h
	ina = gNaTs2_t*(v-ena)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
  LOCAL qt
  qt = 2.3^((34-21)/10)

	UNITSOFF
    if(v == -32){
    	v = v+0.0001
    }
		mAlpha = (0.182 * (v- -32))/(1-(exp(-(v- -32)/6)))
		mBeta  = (0.124 * (-v -32))/(1-(exp(-(-v -32)/6)))
		mInf = mAlpha/(mAlpha + mBeta)
		mTau = (1/(mAlpha + mBeta))/qt

    if(v == -60){
      v = v + 0.0001
    }
		hAlpha = (-0.015 * (v- -60))/(1-(exp((v- -60)/6)))
		hBeta  = (-0.015 * (-v -60))/(1-(exp((-v -60)/6)))
		hInf = hAlpha/(hAlpha + hBeta)
		hTau = (1/(hAlpha + hBeta))/qt
	UNITSON
}