Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. accepted)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:266851
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed multi-compartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Reference:
1 . Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW (2021) Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiology (accepted)
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I h; TASK channel;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python; NetPyNE;
Model Concept(s): Impedance;
Implementer(s): Kelley, Craig;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; I h; TASK channel;
/
L5PYR_Resonance-master
models
Neymotin
mod
ar_traub.mod *
cadad.mod *
cadyn.mod *
cagk.mod *
cal_mh.mod *
cal_mig.mod *
can_mig.mod *
canin.mod *
cat_mig.mod *
cat_traub.mod *
catcb.mod *
gabab.mod *
h_BS.mod *
h_harnett.mod
h_kole.mod *
h_migliore.mod *
HCN1.mod *
hin.mod *
IC.mod *
ican_sidi.mod *
IKsin.mod *
kadist.mod *
kap_BS.mod *
kapcb.mod *
kapin.mod *
kBK.mod *
kctin.mod *
kdmc_BS.mod *
kdr_BS.mod *
kdrin.mod *
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod *
nafx.mod *
nap_sidi.mod *
nax_BS.mod *
savedist.mod *
vecstim.mod *
ghk.inc *
misc.h
parameters.multi *
                            
: Persistent Na+ channel
: adapted from 
:  https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=144089&file=/PFCcell/mechanism/nap.mod

NEURON {
  SUFFIX nap
  USEION na READ ena WRITE ina
  RANGE gbar
  RANGE DA_alphamshift,DA_betamshift
  RANGE DA_alphahfactor, DA_betahfactor
}

UNITS {
  (mA) = (milliamp)
  (mV) = (millivolt)	
}

PARAMETER {
  v (mV)
  gbar= 0.0022 (mho/cm2) <0,1e9>
  ena (mV) : do not set global ena here
  DA_alphamshift=0 : 2 for 100% DA, 0 otherwise
  DA_betamshift=0  : 5 for 100% DA,0 otherwise
  DA_alphahfactor=0: -.8e-5 for DA, 0 otherwise
  DA_betahfactor=0 : 0.014286-0.02 for DA, 0 otherwise
}

STATE {
  m h
}

ASSIGNED {
  ina (mA/cm2)
  minf hinf 
  mtau (ms)
  htau (ms)
  g (mho/cm2)	
}

PROCEDURE iassign () {
  g = gbar*m*h
  ina = g*(v-ena)
}

INITIAL {
  rate(v)
  m = minf
  h = hinf
  iassign()
}

BREAKPOINT {
  SOLVE states METHOD cnexp
  iassign()
}

DERIVATIVE states {
  rate(v)
  m' = (minf-m)/mtau
  h' = (hinf-h)/htau
}

UNITSOFF

FUNCTION malf( v){ LOCAL va 
  va=v+12+DA_alphamshift
  if (fabs(va)<1e-04){
    va = va + 0.00001 
  }
  malf = (-0.2816*va)/(-1+exp(-va/9.3))	
}

FUNCTION mbet(v(mV))(/ms) { LOCAL vb 
  vb=v-15+DA_betamshift
  if (fabs(vb)<1e-04){
    vb = vb + 0.00001 
  }  
  mbet = (0.2464*vb)/(-1+exp(vb/6))
}	

FUNCTION half(v(mV))(/ms) { LOCAL vc 
  vc=v+42.8477
  if (fabs(vc)<1e-04){
    vc=vc+0.00001 
  }
  half= (2.8e-5+DA_alphahfactor)*(exp(-vc/4.0248))
}

FUNCTION hbet(v(mV))(/ms) { LOCAL vd
  vd=v-413.9284
  if (fabs(vd)<1e-04){
    vd=vd+0.00001 
  }
  hbet= (0.02+DA_betahfactor)/(1+exp(-vd/148.2589))
}

PROCEDURE rate(v (mV)) {LOCAL msum, hsum, ma, mb, ha, hb
  ma=malf(v) mb=mbet(v) ha=half(v) hb=hbet(v)
	
  msum = ma+mb
  minf = ma/msum
  mtau = 1/msum	
	
  hsum = ha+hb
  hinf = ha/hsum
  htau = 1/hsum
}
	
UNITSON