Coincidence detection in MSO principal cells (Goldwyn et al. 2019)

 Download zip file 
Help downloading and running models
Accession:266961
How a particular combination of anatomical and biophysical properties results in a short integration window (good for detection of closely-coincident inputs) while also enabling efficient axonal firing with brief interspike intervals (needed to faithfully report a series of coincidences between high frequency presynaptic spike trains).
Reference:
1 . Goldwyn JH, Remme MWH, Rinzel J (2019) Soma-axon coupling configurations that enhance neuronal coincidence detection. PLoS Comput Biol 15:e1006476 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Auditory brainstem;
Cell Type(s): Medial Superior Olive (MSO) cell;
Channel(s): I Sodium; I_KLT;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Coincidence Detection; Synaptic Integration; Two-port analysis of electrotonus; Voltage transfer ratio; Equivalent PI circuit; Excitability;
Implementer(s): Goldwyn, Joshua [jhgoldwyn at gmail.com];
Search NeuronDB for information about:  I Sodium; I_KLT;
/
TwoCompartmentModel-master
ReadMe.md
CarneyModel.m
EasyRun.m
getParam.m
LICENSE *
passiveParamFig.m
ResponseToAN.m
ResponseToEPSGpair.m
ResponseToRamp.m
ResponseToStep.m
TwoCptAN_func.m
TwoCptANode.m
TwoCptODE.m
                            
% TwoCpt model with WITH CARNEY MODEL AN INput
function [t,y,ANforMSO,Sipsi,Scontra] = TwoCptAN_func(ParamStruct)

    % Outputs
    % t - time (ms)
    % y - V1, V2, and gating variables
    % ANforMSO - spike times (ms) and number of occurences
    % Sipsi, Scontra - Sound waveform, input to AN model

    % Simulation time (ms)
    t0 =0;
    ANstruct.tEnd = ParamStruct.tEnd; tEnd = ParamStruct.tEnd;

    % Stimulus
    ANstruct.Stim = ParamStruct.Stim;

    % Number of AN fibers
    ANstruct.nAN = ParamStruct.nAN;

    % Generate AN spikes (Ipsi Ear)
    ANstruct.F0 = ParamStruct.F0;
    ANstruct.stimdb =ParamStruct.stimdb(1);
    ANstruct.CF = ParamStruct.CF;
    [Sipsi,a] = CarneyModel(ANstruct,0);
    ANipsi(1,:) = a(1,:)*1E3;  % switch to ms
    ANipsi(2,:) = a(2,:);

    % Generate AN spikes (Contra Ear)
    ANstruct.stimdb = ParamStruct.stimdb(2);   
    [Scontra,a] = CarneyModel(ANstruct,ParamStruct.itd);
    ANcontra(1,:) =  a(1,:)*1E3;  % switch to ms
    ANcontra(2,:) =  a(2,:);

    ANforMSO = [ANipsi ANcontra];   

    % Get Parameters
    P = getParam(ParamStruct.a12, ParamStruct.a21,ParamStruct.KLTfrac);
    P.gNa = ParamStruct.gNa;
    P.Gsyn = ParamStruct.Gsyn;

    % Initialize MSO ode
    Vrest= P.Vrest; % Resting potential (mV)
    w1 = P.winf(Vrest);
    w2 = P.winf(Vrest);
    h = P.hinf(Vrest);
    x0 = [Vrest Vrest w1 h w2];
    
    ANforMSOstruct.P = P;
    ANforMSOstruct.ANforMSO = ANforMSO;

    %Solve MSO ode
    options = odeset('MaxStep',.1);
    [t,y] = ode15s(@TwoCptANode, t0:.01:tEnd, x0,options,ANforMSOstruct);