Hyperexcitability from Nav1.2 channel loss in neocortical pyramidal cells (Spratt et al 2021)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:267067
Based on the Layer 5 thick-tufted pyramidal cell from the Blue Brain Project, we modify the distribution of the sodium channel Nav1.2 to recapitulate an increase in excitability observed in ex vivo slice experiments.
Reference:
1 . Spratt PWE, Alexander RPD, Ben-Shalom R, Sahagun A, Kyoung H, Keeshen CM, Sanders SJ, Bender KJ (2021) Paradoxical hyperexcitability from NaV1.2 sodium channel loss in neocortical pyramidal cells Cell Rep. 36(5):109483 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s): Neocortex layer 5 pyramidal cell;
Channel(s): I h; I M; I Potassium; I Sodium; I L high threshold; I T low threshold;
Gap Junctions:
Receptor(s):
Gene(s): Nav1.2 SCN2A;
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s):
Implementer(s): Ben-Shalom, Roy [rbenshalom at ucdavis.edu]; Kyoung, Henry [hkyoung at berkeley.edu];
Search NeuronDB for information about:  I L high threshold; I T low threshold; I M; I h; I Sodium; I Potassium;
/
SprattEtAl2021
Ri Increase
.ipynb_checkpoints
mechanisms
morphology
params
Stims
Volts
README *
.provenance.json *
25% Ri Increase Figures.ipynb *
axon_utils.hoc
biophysics.hoc *
cellinfo.json *
constants.hoc *
creategui.hoc *
createsimulation.hoc *
fit.hoc *
gui.ses *
init.hoc *
LICENSE *
morphology.hoc *
mosinit.hoc *
ringplot.hoc *
run.py *
run_RmpRiTau.py *
runModel.hoc *
template.hoc *
topo_code.hoc *
                            
// Start topologyList output

// Start mechanisms output
objref mt,ms,fn,pp
strdef s,ss,mname
mt = new MechanismType(0)
fn = new File()
fn.wopen("64MDL.csv")
forall{
	fn.printf("#%s\n",secname())
	if (ismembrane("pas")){
		fn.printf("g_pas = %f\n",g_pas)
		fn.printf("e_pas = %f\n",e_pas)
	}
	for i=0, mt.count()-1 {
		mt.select(i)
		mt.selected(mname)
		if (ismembrane(mname)){
			ms = new MechanismStandard(mname,-1)
			for j=0, ms.count()-1 {
				k = ms.name(s, j)
				sprint(ss,"temp=%s",s)
				execute(ss)
				fn.printf("%s = %f\n",s,temp)
			}
			ms = new MechanismStandard(mname,3)
			for j=0, ms.count()-1 {
				k = ms.name(s, j)
				sprint(ss,"temp=%s",s)
				execute(ss)
				fn.printf("%s = %f\n",s,temp)
			}
		}
	}
}
fn.close()
// End mechanisms output
// Start point processess mechanisms output
fn = new File()
fn.wopen("64PP.csv")
forall{
	fn.printf("#%s\n",secname())
	mt = new MechanismType(1)
	mt.select("IClamp")
	for (pp = mt.pp_begin(); object_id(pp) != 0; pp = mt.pp_next()) {
		x = pp.get_loc()
		del1 = pp.del
		dur1 = pp.dur
		amp1 = pp.amp
		fn.printf("IClamp,%g, %g, %g, %g, ", x, del1, dur1, amp1)
		pop_section()
	}
	fn.printf("\n")
}
fn.close()
// End point processess mechanisms output

MyPrintMatrix3()

// End Fmatrix
// Start Recording Sites
//hoc_stdout("RecList.csv")
PrintRecSites()

quit()