Olfactory Mitral Cell (Bhalla, Bower 1993)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:2733
This is a conversion to NEURON of the mitral cell model described in Bhalla and Bower (1993). The original model was written in GENESIS and is available by joining BABEL, the GENESIS users' group here http://www.genesis-sim.org/GENESIS/babel.html
Reference:
1 . Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948-65 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Parameter Fitting; Influence of Dendritic Geometry; Detailed Neuronal Models; Olfaction;
Implementer(s): Davison, Andrew [Andrew.Davison at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Potassium;
/
bbmit
README
cadecay.mod *
kA.mod *
kca3.mod *
kfasttab.mod
kslowtab.mod *
lcafixed.mod *
nafast.mod *
fig5a.dat
kfast_k.inf *
kfast_k.tau *
kfast_n.inf *
kfast_n.tau *
kslow_k.inf *
kslow_k.tau *
kslow_n.inf *
kslow_n.tau *
mit_init.hoc
mit_memb.hoc
mit_morph.hoc
mit_param.hoc
mitral.connect
mitral.ses
mitral.xyzd
mosinit.hoc
                            
// mit_morph.hoc 
// Definition of mitral cell morphology and connections
// Andrew Davison 17-08-98


//********************************************************************************
// Definition of procedures used in this file
//********************************************************************************

proc read_parent() {
	parent = fscan()
}

//********************************************************************************
// Open input file and create sections
//********************************************************************************

create soma, axon[13], prim_dend[6], glom[94]
create sec_dendp1[3], sec_dendd1[8][5]
create sec_dendp2[3], sec_dendd2[8][5]
create sec_dendp3[3], sec_dendd3[10][5]
create sec_dendp4[3], sec_dendd4[6][5]
access soma

//********************************************************************************
// Connecting sections
//********************************************************************************

ropen("mitral.connect")	// open data file

print"<< Connecting sections >>"

soma connect axon[0](0), 1
for i = 0,11 {
   axon[i] connect axon[i+1](0), 1
}

print "<< axon connected to soma >>"

soma connect prim_dend[0](0), 0
for i = 0,4 {
   prim_dend[i] connect prim_dend[i+1](0), 1
}

print "<< primary dendrite connected to soma >>"

prim_dend[5] connect glom[0](0), 1
prim_dend[5] connect glom[47](0), 1

print "<< glomerulus connected to primary dendrite >>"

for i = 1,46 {
   read_parent()
   //print "Parent ",parent," connected to child ",i
   glom[parent] connect glom[i](0), 1
}

for i = 48,93 {
   read_parent()
   //print "Parent ",parent," connected to child ",i
   glom[parent] connect glom[i](0), 1
}

print "<< glomerulus connected up >>"

// proximal secondary dendrites

soma connect sec_dendp1[0](0), 0
soma connect sec_dendp2[0](0), 0
soma connect sec_dendp3[0](0), 0
soma connect sec_dendp4[0](0), 0

for i = 0,1 {
   sec_dendp1[i] connect sec_dendp1[i+1](0), 1
   sec_dendp2[i] connect sec_dendp2[i+1](0), 1
   sec_dendp3[i] connect sec_dendp3[i+1](0), 1
   sec_dendp4[i] connect sec_dendp4[i+1](0), 1
}

// distal secondary dendrites

for i = 0,5 {
   for j = 0,3 {
      sec_dendd1[i][j] connect sec_dendd1[i][j+1](0), 1
      sec_dendd2[i][j] connect sec_dendd2[i][j+1](0), 1
      sec_dendd3[i][j] connect sec_dendd3[i][j+1](0), 1
      sec_dendd4[i][j] connect sec_dendd4[i][j+1](0), 1
   }
} 

for i = 6,7 {
   for j = 0,3 {
      sec_dendd1[i][j] connect sec_dendd1[i][j+1](0), 1
      sec_dendd2[i][j] connect sec_dendd2[i][j+1](0), 1
      sec_dendd3[i][j] connect sec_dendd3[i][j+1](0), 1
   }
}

for i = 8,9 {
   for j = 0,3 {
      sec_dendd3[i][j] connect sec_dendd3[i][j+1](0), 1
   }
}


// connect proximal to distal
sec_dendp1[2] connect sec_dendd1[0][0](0), 1
sec_dendp1[2] connect sec_dendd1[7][0](0), 1
sec_dendp2[2] connect sec_dendd2[0][0](0), 1
sec_dendp2[2] connect sec_dendd2[7][0](0), 1
sec_dendp3[2] connect sec_dendd3[0][0](0), 1
sec_dendp3[2] connect sec_dendd3[9][0](0), 1
sec_dendp4[2] connect sec_dendd4[0][0](0), 1
sec_dendp4[2] connect sec_dendd4[5][0](0), 1

for i = 1,6 {
   read_parent()
   sec_dendd1[parent][4] connect sec_dendd1[i][0](0), 1
}

for i = 1,6 {
   read_parent()
   sec_dendd2[parent][4] connect sec_dendd2[i][0](0), 1
}

for i = 1,8 {
   read_parent()
   sec_dendd3[parent][4] connect sec_dendd3[i][0](0), 1
}

for i = 1,4 {
   read_parent()
   sec_dendd4[parent][4] connect sec_dendd4[i][0](0), 1
}

print "<< secondary dendrites all connected >>"

ropen("")	// close coordinate file

ropen("mitral.xyzd")

forall {
     pt3dadd(fscan(),fscan(),fscan(),fscan())
     pt3dadd(fscan(),fscan(),fscan(),fscan())
}

ropen("")

soma area(0.5)

// END OF FILE mit_morph.hoc