MNTB Neuron: Kv3.1 currents (Wang et al 1998)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:3454
Model of Medial Nucleus of the Trapezoid Body (MNTB) neurons described in Lu-Yang Wang, Li Gan, Ian D. Forsythe and Leonard K. Kaczmarek. Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J. Physiol (1998) 509.1 183-194. Created by David Kornfeld, Byram Hills High School, Armonk NY. Please email dbk1@mindspring.com for questions about the model. See Readme.txt below for more info.
Reference:
1 . Wang LY, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509 ( Pt 1):183-94 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Medial Nucleus of the Trapezoid Body (MNTB) neuron;
Channel(s): I Na,t; I K; I Sodium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s):
Implementer(s): Kornfeld, David [dbk1 at mindspring.com];
Search NeuronDB for information about:  I Na,t; I K; I Sodium; I Potassium;
COMMENT
Derived from IClamp but triggered by a NetCon event. On each event, a
pulse of current with dur and amp is generated.
Since this is an electrode current, positive values of i depolarize the cell
and in the presence of the extracellular mechanism there will be a change
in vext since i is not a transmembrane current but a current injected
directly to the inside of the cell.
ENDCOMMENT

NEURON {
	POINT_PROCESS TriggeredIClamp
	RANGE dur, amp, i
	ELECTRODE_CURRENT i
}
UNITS {
	(nA) = (nanoamp)
}

PARAMETER {
	dur (ms)	<0,1e9>
	amp (nA)
}

ASSIGNED { i (nA) ilocal (nA)}

INITIAL {
	i = 0
	ilocal = 0
}

BREAKPOINT {
		i = ilocal
}

NET_RECEIVE(w) {
	if (flag == 0) {
		ilocal = ilocal + amp
		net_send(dur, 1)
	}else{
		ilocal = ilocal - amp
	}
}