MNTB Neuron: Kv3.1 currents (Wang et al 1998)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:3454
Model of Medial Nucleus of the Trapezoid Body (MNTB) neurons described in Lu-Yang Wang, Li Gan, Ian D. Forsythe and Leonard K. Kaczmarek. Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J. Physiol (1998) 509.1 183-194. Created by David Kornfeld, Byram Hills High School, Armonk NY. Please email dbk1@mindspring.com for questions about the model. See Readme.txt below for more info.
Reference:
1 . Wang LY, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509 ( Pt 1):183-94 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Medial Nucleus of the Trapezoid Body (MNTB) neuron;
Channel(s): I Na,t; I K; I Sodium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s):
Implementer(s): Kornfeld, David [dbk1 at mindspring.com];
Search NeuronDB for information about:  I Na,t; I K; I Sodium; I Potassium;
: 	High threshold potassium chanel from 
:	Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones
:	Lu-Yang Wang, Li Gan, Ian D. Forsythe and Leonard K. Kaczmarek
:	J. Physiol (1998), 501.9, pp. 183-194

NEURON {
	SUFFIX HT
	USEION k READ ek WRITE ik
	RANGE gbar, g, ik
	GLOBAL ninf, ntau, pinf, ptau, an, bn, ap, bp
}

: area in paper is 1000 (um2) so divide our density parameters by 10

UNITS {
	(mV) = (millivolt)
	(S) = (mho)
	(mA) = (milliamp)
}

PARAMETER {
	gbar = .015 (S/cm2) : .15 (uS)
	gamma = .1

	kan = .2719 (/ms)
	ean = .04 (/mV)
	kbn = .1974 (/ms)
	ebn = 0 (/mV)

	kap = .00713 (/ms)
	eap = -.1942 (/mV)
	kbp = .0935 (/ms)
	ebp = .0058 (/mV)
}

ASSIGNED {
	v (mV)
	ek (mV)
	ik (mA/cm2)

	ninf
	ntau (ms)
	pinf
	ptau (ms)

	an (/ms)
	bn (/ms)
	ap (/ms)
	bp (/ms)
}

STATE {
	n p
}

INITIAL {
	rates(v)
	n = ninf
	p = pinf
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	ik = gbar*n^3*(1 - gamma + gamma*p)*(v - ek)
}

DERIVATIVE state {
	rates(v)
	n' = (ninf - n)/ntau
	p' = (pinf - p)/ptau
}

PROCEDURE rates(v(mV)) {
	an = kan*exp(ean*v)
	bn = kbn*exp(ebn*v)

	ap = kap*exp(eap*v)
	bp = kbp*exp(ebp*v)

	ninf = an/(an + bn)
	ntau = 1/(an + bn)
	pinf = ap/(ap + bp)
	ptau = 1/(ap + bp)
}