Vomeronasal sensory neuron (Shimazaki et al 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:64212
NEURON model files from the papers: Shimazaki et al, Chem. Senses, epub ahead of print (2006) Electrophysiological properties and modeling of murine vomeronasal sensory neurons in acute slice preparations. The model reproduces quantitatively the experimentally observed firing rates of these neurons under a wide range of input currents.
Reference:
1 . Shimazaki R, Boccaccio A, Mazzatenta A, Pinato G, Migliore M, Menini A (2006) Electrophysiological properties and modeling of murine vomeronasal sensory neurons in acute slice preparations. Chem Senses 31:425-35 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials;
Implementer(s): Shimazaki, Ranken ;
Search NeuronDB for information about:  I Na,t; I A; I K;
/
VNO
readme.txt
kavn.mod
kdr.mod *
navn.mod
mosinit.hoc
vno.hoc
vno.ses
                            
TITLE K-A
: K-A current for Mitral Cells from Wang et al (1996)
: M.Migliore Jan. 2002
: adapted for vn neurons M.Migliore 2005

NEURON {
	SUFFIX kavn
	USEION k READ ek WRITE ik
	RANGE  gbar
	GLOBAL minf, mtau, hinf, htau
}

PARAMETER {
	gbar = 0.00215   	(mho/cm2)	
								
	celsius
	ek		(mV)            : must be explicitly def. in hoc
	v 		(mV)

	a0m=0.0035	
	vhalfm=-75	
	zetam=0.2	
	gmm=0.82 	

	vm=-21		
	km=12.8		

	a0h=0.002	
	vhalfh=-70	
	zetah=0.05	
	gmh=0.95	

	vh=0		
	kh=60		

	q10=3
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ik 		(mA/cm2)
	minf 		mtau (ms)	 	
	hinf 		htau (ms)	 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
	ik = gbar*m^1.5*h*(v - ek)
} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf  
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(v) {  
	LOCAL qt
        qt=q10^((celsius-22)/10)
        minf = 1/(1 + exp(-(v-vm)/km))
	mtau = betm(v)/(qt*a0m*(1+alpm(v)))

        hinf = 1/(1 + exp((v-vh)/kh))
	htau = beth(v)/(qt*a0h*(1+alph(v)))
}

FUNCTION alpm(v(mV)) {
  alpm = exp(zetam*(v-vhalfm)) 
}

FUNCTION betm(v(mV)) {
  betm = exp(zetam*gmm*(v-vhalfm)) 
}

FUNCTION alph(v(mV)) {
  alph = exp(zetah*(v-vhalfh)) 
}

FUNCTION beth(v(mV)) {
  beth = exp(zetah*gmh*(v-vhalfh)) 
}