: $Id: geneval_cvode.inc,v 1.1.1.1 2005/12/15 15:16:39 hines Exp $
TITLE Kevins Cvode modified Generalized Hodgkin-Huxley eqn Channel Model
COMMENT
Each channel has activation and inactivation particles as in the original
Hodgkin Huxley formulation. The activation particle mm and inactivation
particle hh go from on to off states according to kinetic variables alpha
and beta which are voltage dependent.
Allows exponential, sigmoid and linoid forms (flags 0,1,2)
See functions alpha() and beta() for details of parameterization
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
RANGE gmax, g, i
GLOBAL erev, Inf, Tau, vrest
} : end NEURON
CONSTANT {
FARADAY = 96489.0 : Faraday's constant
R= 8.31441 : Gas constant
} : end CONSTANT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(umho) = (micromho)
} : end UNITS
COMMENT
** Parameter values should come from files specific to particular channels
PARAMETER {
erev = 0 (mV)
gmax = 0 (mho/cm^2)
maflag = 0
malphaA = 0
malphaB = 0
malphaV0 = 0
mbflag = 0
mbetaA = 0
mbetaB = 0
mbetaV0 = 0
exptemp = 0
mq10 = 3
mexp = 0
haflag = 0
halphaA = 0
halphaB = 0
halphaV0 = 0
hbflag = 0
hbetaA = 0
hbetaB = 0
hbetaV0 = 0
hq10 = 3
hexp = 0
} : end PARAMETER
ENDCOMMENT
PARAMETER {
cao (mM)
cai (mM)
celsius (degC)
dt (ms)
v (mV)
}
ASSIGNED {
i (mA/cm^2)
g (mho/cm^2)
Inf[2] : 0 = m and 1 = h
Tau[2] : 0 = m and 1 = h
} : end ASSIGNED
STATE { m h }
INITIAL {
mh(v)
m = Inf[0] h = Inf[1]
}
BREAKPOINT {
LOCAL hexp_val, index, mexp_val, mexp2
SOLVE states METHOD cnexp
hexp_val = 1
mexp_val = 1
: Determining h's exponent value
if (hexp > 0) {
FROM index=1 TO hexp {
hexp_val = h * hexp_val
}
}
: Determining m's exponent value
if (mexp > 0) {
FROM index = 1 TO mexp {
mexp_val = m * mexp_val
}
} else if (mexp<0) {
mexp2=-mexp
FROM index = 1 TO mexp2 {
mexp_val = Inf[0] * mexp_val
}
}
: mexp hexp
: Note that mexp_val is now = m and hexp_val is now = h
g = gmax * mexp_val * hexp_val
iassign()
} : end BREAKPOINT
: ASSIGNMENT PROCEDURES
: Must be given by a user routines in parameters.multi
: E.G.:
: PROCEDURE iassign () { i = g*(v-erev) ina=i }
: PROCEDURE iassign () { i = g*ghkca(v) ica=i }
:-------------------------------------------------------------------
DERIVATIVE states {
mh(v)
m' = (-m + Inf[0]) / Tau[0]
h' = (-h + Inf[1]) / Tau[1]
}
:-------------------------------------------------------------------
: NOTE : 0 = m and 1 = h
PROCEDURE mh (v) {
LOCAL a, b, j, qq10[2]
qq10[0] = mq10^((celsius-exptemp)/10.)
qq10[1] = hq10^((celsius-exptemp)/10.)
: Calculater Inf and Tau values for h and m
FROM j = 0 TO 1 {
a = alpha (v, j)
b = beta (v, j)
if (j==1 && hexp==0) { Tau[j] = 1. Inf[j] = 1.
} else {
Inf[j] = a / (a + b)
Tau[j] = 1. / (a + b) / qq10[j]
}
}
} : end PROCEDURE mh (v)
:-------------------------------------------------------------------
FUNCTION alpha(v,j) {
LOCAL flag, A, B, V0
if (j==1 && hexp==0) {
alpha = 0
} else {
if (j == 1) {
A = halphaA B = halphaB V0 = halphaV0+vrest flag = haflag
} else {
A = malphaA B = malphaB V0 = malphaV0+vrest flag = maflag
}
if (flag == 1) { : EXPONENTIAL
alpha = A*exp((v-V0)/B)
} else if (flag == 2) { : SIGMOID
alpha = A/(exp((v-V0)/B)+1)
} else if (flag == 3) { : LINOID
if(v == V0) {
alpha = A*B
} else {
alpha = A*(v-V0)/(exp((v-V0)/B)-1) }
}
}
} : end FUNCTION alpha (v,j)
:-------------------------------------------------------------------
FUNCTION beta (v,j) {
LOCAL flag, A, B, V0
if (j==1 && hexp==0) {
beta = 1
} else {
if (j == 1) {
A = hbetaA B = hbetaB V0 = hbetaV0+vrest flag = hbflag
} else {
A = mbetaA B = mbetaB V0 = mbetaV0+vrest flag = mbflag
}
if (flag == 1) { : EXPONENTIAL
beta = A*exp((v-V0)/B)
} else if (flag == 2) { : SIGMOID
beta = A/(exp((v-V0)/B)+1)
} else if (flag == 3) { : LINOID
if(v == V0) {
beta = A*B
} else {
beta = A*(v-V0)/(exp((v-V0)/B)-1) }
}
}
} : end FUNCTION beta (v,j)
:-------------------------------------------------------------------
FUNCTION FRT(temperature) {
FRT = FARADAY * 0.001 / R / (temperature + 273.15)
} : end FUNCTION FRT (temperature)
:-------------------------------------------------------------------
FUNCTION ghkca (v) { : Goldman-Hodgkin-Katz eqn
LOCAL nu, efun
nu = v*2*FRT(celsius)
if(fabs(nu) < 1.e-6) {
efun = 1.- nu/2.
} else {
efun = nu/(exp(nu)-1.) }
ghkca = -FARADAY*2.e-3*efun*(cao - cai*exp(nu))
} : end FUNCTION ghkca()
|