Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:64296
This four-compartment mitral cell exhibits endogenous subthreshold oscillations, phase resetting, and evoked spike phasing properties as described in electrophysiological studies of mitral cells. It is derived from the prior work of Davison et al (2000) and Bhalla and Bower (1993). See readme.txt for details.
Reference:
1 . Rubin DB, Cleland TA (2006) Dynamical mechanisms of odor processing in olfactory bulb mitral cells. J Neurophysiol 96:555-68 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I h; I K,Ca; I Sodium; I Calcium; I Potassium; I A, slow;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Temporal Pattern Generation; Oscillations; Synchronization; Simplified Models; Delay; Olfaction;
Implementer(s): Rubin, Daniel B ;
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I h; I K,Ca; I Sodium; I Calcium; I Potassium; I A, slow;
/
mitral
readme.txt *
cadecay.mod *
Ih.mod *
INaP.mod
kA.mod
kca3.mod
kfasttab.mod *
kO.mod *
kslowtab.mod *
lcafixed.mod *
nafast.mod
kfast_k.inf *
kfast_k.tau *
kfast_n.inf *
kfast_n.tau *
kslow_k.inf *
kslow_k.tau *
kslow_n.inf *
kslow_n.tau *
mitral.hoc
mosinit.hoc *
tabchannels.hoc *
                            
TITLE Persistent sodium current
: Implemented in Rubin and Cleland (2006) J Neurophysiology
: Adapted from Fransen et al (2004) Hippocampus

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
} 
NEURON { 
	SUFFIX NaP
	USEION na READ ena WRITE ina
	RANGE gbar, ina
}

PARAMETER { 
	gbar = 0.0 	(mho/cm2)
	v ena 		(mV)
} 

ASSIGNED { 
	ina 		(mA/cm2) 
	minf 		(1)
	mtau 		(ms)
	hinf
	htau		(ms)
} 
STATE {
	m h
}

BREAKPOINT { 
	SOLVE states METHOD cnexp
	ina = gbar * m * h * ( v - ena )
} 

INITIAL { 
	settables(v) 
	m = minf
	h = hinf
} 

DERIVATIVE states { 
	settables(v) 
	m' = ( minf - m ) / mtau
	h' = ( hinf - h ) / htau 
}
UNITSOFF
 
PROCEDURE settables(v) { 
	TABLE minf, mtau, hinf, htau FROM -120 TO 40 WITH 641
	minf  = 1 / ( 1 + exp( -(v + 48.7) / 4.4 ) ) 
	if( v == -38.0 ) {
		mtau = .0013071895424837 :limit as v --> -38, a discontinuity in the mtau function
	}else{
		mtau = 1 / ((.091 * 1000 * (v + 38))/(1 - exp(-(v + 38)/5)) + (-.062 * 1000 * (v + 38))/(1 - exp((v + 38)/5)))
	}
	hinf = 1 / ( 1 + exp((v + 48.8) / 9.98 ))
	htau = 1 / ((-2.88*.001*(v + 17.049))/(1 - exp((v - 49.1)/4.63)) + (6.94*.001*(v + 64.409))/(1 - exp(-(v + 447)/2.63)))
}
UNITSON