Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:87284
The model simulations provide evidence oblique dendrites in CA1 pyramidal neurons are susceptible to hyper-excitability by amyloid beta block of the transient K+ channel, IA. See paper for details.
Reference:
1 . Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM (2010) Abnormal Excitability of Oblique Dendrites Implicated in Early Alzheimer's: A Computational Study. Front Neural Circuits [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I h; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Pathophysiology; Aging/Alzheimer`s;
Implementer(s): Carnevale, Ted [Ted.Carnevale at Yale.edu]; Morse, Tom [Tom.Morse at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I h; I K,Ca;
/
CA1_abeta
translate
readme.html
cacumm.mod
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
distr.mod *
h.mod
ipulse2.mod *
kadist.mod
kaprox.mod
kdrca1.mod
na3n.mod
naxn.mod *
zcaquant.mod
aBeta.hoc
add_ca.hoc
bAP_peak_vecs.hoc
c91662.ses
C91662_Link.txt
cond_report.hoc
control_boxes.hoc
distribute_currents.hoc
fig1.jpg
fig2.jpg
fig2A_c91662.hoc
fig3.jpg
fig3.ses
fig4.jpg
fig4.ses
fig5.jpg
fig6b.jpg
figs.hoc
find_averages.hoc
fixnseg.hoc
GaspiriniEtAl2007Fig1Stimulation.ses
generate_conc_graph.hoc
gka_averager.hoc
graph_na3_kinetics.hoc
init_and_run_and_graph.hoc
leaky_distal.hoc
maxica.hoc
maxica.ses.20100525
mosinit.hoc
na3_shifter.hoc
ntc_additions.hoc
oblique_application.hoc
oblique_scaled_ka.hoc
obliques_primary_tuft.hoc
paper_fig_buttons.hoc
sectiontest.hoc
shrink_obliques.hoc
SubBranch.hoc
trigger_and_start.hoc
wait_for_go.hoc
                            
// SubBranch.hoc
// forms subbranch from section with the function call
// objref sb
// sb=new SubBranch(tmpSectionRef)
// sb is then a SectionList including tmpSectionRef.sec and all it's descendents
// then can iterate through all the sections with
// forsec sb.o { ... }

begintemplate SubBranch
// expects to be called as above
public o // output object o is a SectionList of the input argument's sec and all it's children
objref tmpobj, tmpobj1, o, children, sl, tmpobj2, tmpobj3, tmpsr
proc init() {
   if (numarg()) {
     tmpobj = $o1
     o=new SectionList()
     children=new SectionList()
     tmpobj.sec o.append()
     last_number_of_elements = 0  // at this init time the last is also the first
     forsec o { last_number_of_elements +=1 }  // find the number of children
     tmpobj.sec o.children()  // all called sec's children to the current dendrite
     current_number_of_elements=0
     forsec o { current_number_of_elements +=1 }  // find the number of children
     number_of_new_elements = current_number_of_elements - last_number_of_elements
     while (number_of_new_elements) {
       last_number_of_elements = current_number_of_elements
       forsec o { o.children() }  // add any potential new children to the list
       o.unique() // make the list unique
       current_number_of_elements=0
       forsec o { current_number_of_elements +=1 }  // find the number of children
       number_of_new_elements = current_number_of_elements - last_number_of_elements
     }
     // print " on exit o is:"
     // o.printnames()
   }
 }
endtemplate SubBranch