Citations for TRPM8-dependent dynamic response in cold thermoreceptors (Olivares et al. 2015)

Legends: Link to a Model Reference cited by multiple papers

Olivares E, Salgado S, Maidana JP, Herrera G, Campos M, Madrid R, Orio P (2015) TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor. PLoS One 10:e0139314 [PubMed]

References and models cited by this paper

References and models that cite this paper

Bade H, Braun HA, Hensel H (1979) Parameters of the static burst discharge of lingual cold receptors in the cat. Pflugers Arch 382:1-5 [PubMed]
Bahl A, Stemmler MB, Herz AV, Roth A (2012) Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. J Neurosci Methods 210:22-34 [Journal] [PubMed]
   A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012) [Model]
Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204-8 [Journal] [PubMed]
Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13-26 [PubMed]
Bond CT, Maylie J, Adelman JP (1999) Small-conductance calcium-activated potassium channels. Ann N Y Acad Sci 868:370-8 [PubMed]
Braun HA, Bade H, Hensel H (1980) Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Pflugers Arch 386:1-9 [PubMed]
Braun HA, Huber MT, Et_al (1998) Computer simulations of neuronal signal transduction: the role of nonlinear dynamics and noise. Chaos 8:881-889
Brock JA, McLachlan EM, Belmonte C (1998) Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig cornea. J Physiol 512 ( Pt 1):211-7 [PubMed]
Brock JA, Pianova S, Belmonte C (2001) Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guinea-pig cornea. J Physiol 533:493-501 [PubMed]
Carr RW, Pianova S, Fernandez J, Fallon JB, Belmonte C, Brock JA (2003) Effects of heating and cooling on nerve terminal impulses recorded from cold-sensitive receptors in the guinea-pig cornea. J Gen Physiol 121:427-39 [Journal] [PubMed]
Daniels RL, Takashima Y, McKemy DD (2009) Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 284:1570-82 [Journal] [PubMed]
DeMaria S, Ngai J (2010) The cell biology of smell. J Cell Biol 191:443-52 [Journal] [PubMed]
Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371-8 [Journal] [PubMed]
Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563-90 [Journal] [PubMed]
Frisby JP,Stone JV (2010) Seeing Second Edition: The Computational Approach to Biological Vision
Fujita F, Uchida K, Takaishi M, Sokabe T, Tominaga M (2013) Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J Neurosci 33:6154-9 [Journal] [PubMed]
Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65:150-64 [Journal] [PubMed]
Heinz M, Schäfer K, Braun HA (1990) Analysis of facial cold receptor activity in the rat. Brain Res 521:289-95 [PubMed]
Hensel H,Schäfer K,Schafer K (1984) Thermoreception and Temperature Regulation in Man Recent Advances in Medical Thermology, Ring EFJ:Phillips B, ed. pp.51
Herzog RI, Cummins TR, Waxman SG (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86:1351-64 [Journal] [PubMed]
   TTX-R Na+ current effect on cell response (Herzog et al 2001) (MATLAB) [Model]
   TTX-R Na+ current effect on cell response (Herzog et al 2001) [Model]
Hille B (2001) Ionic Channels of Excitable Membranes
Huber MT, Krieg JC, Dewald M, Voigt K, Braun HA (2000) Stochastic encoding in sensory neurons: impulse patterns of mammalian cold receptors Chaos Solitons Fractals 11:1895-1903
Latorre R, Brauchi S, Madrid R, Orio P (2011) A cool channel in cold transduction. Physiology (Bethesda) 26:273-85 [Journal] [PubMed]
Longtin A, Hinzer K (1996) Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors. Neural Comput 8:215-55 [PubMed]
Madrid R, Donovan-Rodríguez T, Meseguer V, Acosta MC, Belmonte C, Viana F (2006) Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J Neurosci 26:12512-25 [Journal] [PubMed]
Madrid R, Pertusa M (2014) Intimacies and physiological role of the polymodal cold-sensitive ion channel TRPM8. Curr Top Membr 74:293-324 [Journal] [PubMed]
Mälkiä A, Madrid R, Meseguer V, de la Peña E, Valero M, Belmonte C, Viana F (2007) Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J Physiol 581:155-74 [Journal] [PubMed]
McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52-8 [Journal] [PubMed]
O'Leary T, van Rossum MC, Wyllie DJ (2010) Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization. J Physiol 588:157-70 [Journal] [PubMed]
Orio P, Madrid R, de la Peña E, Parra A, Meseguer V, Bayliss DA, Belmonte C, Viana F (2009) Characteristics and physiological role of hyperpolarization activated currents in mouse cold thermoreceptors. J Physiol 587:1961-76 [Journal] [PubMed]
Orio P, Parra A, Madrid R, González O, Belmonte C, Viana F (2012) Role of Ih in the firing pattern of mammalian cold thermoreceptor endings. J Neurophysiol 108:3009-23 [Journal] [PubMed]
   Role of Ih in firing patterns of cold thermoreceptors (Orio et al., 2012) [Model]
Parra A, Madrid R, Echevarria D, del Olmo S, Morenilla-Palao C, Acosta MC, Gallar J, Dhaka A, Viana F, Belmonte C (2010) Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat Med 16:1396-9 [Journal] [PubMed]
Plant RE, Kim M (1976) Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. Biophys J 16:227-44 [Journal] [PubMed]
Rohács T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626-34 [Journal] [PubMed]
Sarria I, Ling J, Zhu MX, Gu JG (2011) TRPM8 acute desensitization is mediated by calmodulin and requires PIP(2): distinction from tachyphylaxis. J Neurophysiol 106:3056-66 [Journal] [PubMed]
Schäfer K, Braun HA, Hensel H (1982) Static and dynamic activity of cold receptors at various calcium levels. J Neurophysiol 47:1017-28 [Journal] [PubMed]
Schäfer K, Braun HA, Rempe L (1991) Discharge pattern analysis suggests existence of a low-threshold calcium channel in cold receptors. Experientia 47:47-50 [PubMed]
Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748-54 [Journal] [PubMed]
Voets T, Owsianik G, Janssens A, Talavera K, Nilius B (2007) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3:174-82 [Journal] [PubMed]
Vriens J, Nilius B, Voets T (2014) Peripheral thermosensation in mammals. Nat Rev Neurosci 15:573-89 [Journal] [PubMed]
Wheeler DG, Groth RD, Ma H, Barrett CF, Owen SF, Safa P, Tsien RW (2012) Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell 149:1112-24 [Journal] [PubMed]
Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503-7 [Journal] [PubMed]
Barlow BM, Joos B, Trinh AK, Longtin A (2018) Cooling reverses pathological bifurcations to spontaneous firing caused by mild traumatic injury. Chaos 28:106328 [Journal] [PubMed]
   Cooling reverses pathological spontaneous firing caused by mild traumatic injury (Barlow et al 2018) [Model]
Mandge D, Manchanda R (2018) A biophysically detailed computational model of urinary bladder small DRG neuron soma. PLoS Comput Biol 14:e1006293 [Journal] [PubMed]
   Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018) [Model]
(49 refs)