Legends: |
Link to a Model |
Reference cited by multiple papers |

## References and models cited by this paper | ## References and models that cite this paper | |||||

Albeverio S, Tirozzi B (1997) An introduction to the mathematical theory of neural networks Fourth Granada Lectures in Computational Physics , Garrido PL:Marro J, ed. pp.197Allouche JP, Courbage M, Skordev G (2001) Notes on cellular automata Cubo, Matematica Educacional 3:213-244Anderson JA (1995) An introduction to neural networksAntonelli F, Dias APS, Golubitsky M, Wang Y (2005) Patterns of synchrony in lattice dynamical systems Nonlinearity 18:2193-2009Bagnoli F, Cecconi F, Flammini A, Vespignani A (2003) Short period attractors and non-ergodic behavior in the deterministic fixed energy sand pile model Europhysics Letters 63:512-518Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A Gen Phys 38:364-374 [PubMed]Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167-77 [PubMed]Blanchard P, Cessac B (2000) What can we learn about self-organized criticality from dynamical systems theory? J Stat Phys 98:357-404Bollobas B (1985) Random GraphsBörgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 15:509-38 [Journal] [PubMed]Burkitt AN, Clark GM (2001) Synchronization of the neural response to noisy periodic synaptic input. Neural Comput 13:2639-72 [Journal] [PubMed]Cessac B, Blanchard P, Krüger T (2001) Lyapunov exponents and transport in the Zhang model of self-organized criticality. Phys Rev E Stat Nonlin Soft Matter Phys 64:016133 [Journal] [PubMed]Chen D, Eu S, Guo A, Yang ZR (1995) Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons J Phys A: Math Gen 28:5177-5182Dauce E, Moynot O, Pinaud O, Samuelides M (2001) Mean-field theory and synchronization in random recurrent neural networks Neural Processing Letters 14:115-126Dorogovtsev SN, Mendes JFF (2003) Evolution of networksEdgar GA (1992) Measure, topology, and fractal geometryEdgar GA, Golds J (1999) A fractal dimension estimate for a graph-directed iterated function system of non-similarities Indiana Univ Math J 48:429-447Feng J, Brown D (1998) Fixed-point attractor analysis for a class of neurodynamics Neural Comput 10:189-213Gerstner W, Kistler WM (2002) Spiking neuron modelsGiacometti A, Diaz-Guilera A (1998) Dynamical properties of the Zhang model of self-organized criticality Phys Rev E 58:247-253Golomb D, Hansel D (2000) The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural Comput 12:1095-139 [PubMed]Hergarten S (2002) Self-organized criticality in earth systemsHertz J, Krogh A, Palmer RG (1991) Introduction to the Theory of Neural Computation.Hopfield JJ, Brody CD (2001) What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc Natl Acad Sci U S A 98:1282-7 [Journal] [PubMed]
Jensen HJ (1998) Self-organized criticalityKandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science (4th ed), Kandel ER:Schwartz JH:Jessell TM, ed. Lago-Fernandez LF, Corbacho FJ, Huerta R (2005) Connection topology dependence of synchronization of neural assemblies on class 1 and 2 excitability. Neural Netw 14:687-96Lee HY, Lee HW, Kim D (1998) Origin of synchronized traffic flow on highways and its dynamic phase transition Phys Rev Lett 81:1130-1133Lehnertz K, Andrzejak RG, Arnhold J, Widman G, Burr W, David P, Elger CE (2000) Possible clinical and research applications of nonlinear EEG analysis in humans Chaos in Brain?, Lehnertz K:Arnhold J:Grassberger P:Elger CE, ed. pp.134Lubeck S, Rajewsky N, Wolf DE (2000) A deterministic sandpile automaton revisited Eur Phys J B 13:715-721Markosová M, Markos P (1992) Analytical calculation of the attractor periods of deterministic sandpiles. Phys Rev A 46:3531-3534 [PubMed]Newman ME, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E Stat Nonlin Soft Matter Phys 64:026118 [Journal] [PubMed]Nishikawa T, Motter AE, Lai YC, Hoppensteadt FC (2003) Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys Rev Lett 91:014101 [Journal] [PubMed]Pecora LM, Barahona M (2005) Synchronization of oscillators in complex networks Chaos Compl Lett 1:61-91Perez CJ, Corral A, Diaz-guilera A (1996) On self-organized criticality and synchronization in lattice models of coupled dynamical systems J Mod Phys B 10:1-41Trappenberg TP (2002) Fundamentals of computational neuroscienceVolk D (2000) Spontaneous synchronization in a discrete neural network model Chaos in brain?, Lehnertz K:Arnhold J:Grassberger P:Elger CE, ed. pp.234Zhang YC (1989) Scaling theory of self-organized criticality. Phys Rev Lett 63:470-473 [Journal] [PubMed] |