Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain 125:1196-209 [PubMed]

References and models cited by this paper

References and models that cite this paper

Corbit VL, Whalen TC, Zitelli KT, Crilly SY, Rubin JE, Gittis AH (2016) Pallidostriatal Projections Promote ß Oscillations in a Dopamine-Depleted Biophysical Network Model. J Neurosci 36:5556-71 [Journal] [PubMed]
   Pallidostriatal projections promote beta oscillations (Corbit, Whalen, et al 2016) [Model]
Edgerton JR, Hanson JE, Günay C, Jaeger D (2010) Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. J Neurosci 30:15146-59 [Journal] [PubMed]
   Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010) [Model]
Edgerton JR, Jaeger D (2011) Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons. J Neurosci 31:10919-36 [Journal] [PubMed]
   Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010) [Model]
Kumaravelu K, Brocker DT, Grill WM (2016) A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. J Comput Neurosci 40:207-29 [Journal] [PubMed]
   Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016) [Model]
Kumaravelu K, Oza CS, Behrend CE, Grill WM (2018) Model-based deconstruction of cortical evoked potentials generated by subthalamic nucleus deep brain stimulation. J Neurophysiol 120:662-680 [Journal] [PubMed]
   Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018) [Model]
Leblois A, Boraud T, Meissner W, Bergman H, Hansel D (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26:3567-83 [Journal] [PubMed]
   A dynamical model of the basal ganglia (Leblois et al 2006) [Model]
So RQ, Kent AR, Grill WM (2012) Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. J Comput Neurosci 32:499-519 [Journal] [PubMed]
   Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012) [Model]
Tripp B, Eliasmith C (2007) Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing. Cereb Cortex 17:1830-40 [Journal] [PubMed]
   Neural transformations on spike timing information (Tripp and Eliasmith 2007) [Model]
(8 refs)