Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Richard A, Orio P, Tanré E (2018) An integrate-and-fire model to generate spike trains with long-range dependence Journal of Computational Neuroscience

   Perfect Integrate and fire with noisy adaptation or fractional noise (Richard et al 2018)

References and models cited by this paper

References and models that cite this paper

Abry P,Gonçalvès P,Flandrin P (1995) Wavelets, spectrum analysis and 1/f processes :15-29
Baddeley R, Abbott LF, Booth MC, Sengpiel F, Freeman T, Wakeman EA, Rolls ET (1997) Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc Biol Sci 264:1775-83 [Journal] [PubMed]
Bair W, Koch C, Newsome W, Britten K (1994) Power spectrum analysis of bursting cells in area MT in the behaving monkey. J Neurosci 14:2870-92 [PubMed]
Bhattacharya J, Edwards J, Mamelak AN, Schuman EM (2005) Long-range temporal correlations in the spontaneous spiking of neurons in the hippocampal-amygdala complex of humans. Neuroscience 131:547-55 [Journal] [PubMed]
Bhattacharya RN,Gupta VK,Waymire E (1983) The Hurst effect under trends Journal of Applied Probability 20(3):649-662
Brunel N, Sergi S (1998) Firing frequency of leaky intergrate-and-fire neurons with synaptic current dynamics. J Theor Biol 195:87-95 [Journal] [PubMed]
Cardinali A,Nason GP (2010) Costationarity of locally stationary time series Journal of Time Series Econometrics 2(2):1
Cardinali A,Nason GP (2018) Practical powerful wavelet packet tests for second-order stationarity Applied and Computational Harmonic Analysis 44(3):558-583
Carmona P,Coutin L,Montseny G (2000) Approximation of some Gaussian processes Statistical Inference for Stochastic Processes 3(1-2):161-171
Chacron MJ, Pakdaman K, Longtin A (2003) Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Comput 15:253-78 [Journal] [PubMed]
Churilla AM, Gottschalke WA, Liebovitch LS, Selector LY, Todorov AT, Yeandle S (1996) Membrane potential fluctuations of human T-lymphocytes have fractal characteristics of fractional Brownian motion. Ann Biomed Eng 24:99-108 [PubMed]
Coeurjolly JF (2000) Simulation and identification of the fractional brownian motion: a bibliographical and comparative study Journal of Statistical Software 5(1):1-53
Dar FH, Meakin JR, Aspden RM (2002) Statistical methods in finite element analysis. J Biomech 35:1155-61 [PubMed]
De Oliveira RC,Barbosa C,Consoni L,Rodrigues A,Varanda W,Nogueira R (2006) Long-term correlation in single calcium-activated potassium channel kinetics Physica A: Statistical Mechanics and its Applications 364:13-22
Decreusefond L,Nualart D (2008) Hitting times for Gaussian processes The Annals of Probability 36(1):319-330
Delorme M, Wiese KJ (2015) Maximum of a Fractional Brownian Motion: Analytic Results from Perturbation Theory. Phys Rev Lett 115:210601 [Journal] [PubMed]
Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739-51 [Journal] [PubMed]
Doukhan P (1994) Mixing: Properties and examples
Drew PJ, Abbott LF (2006) Models and properties of power-law adaptation in neural systems. J Neurophysiol 96:826-33 [Journal] [PubMed]
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412:787-92 [Journal] [PubMed]
Hammond A,Sheffield S (2013) Power law Pólya’s urn and fractional Brownian motion Probability Theory and Related Fields 157(3-4):691-719
Jackson BS (2004) Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Neural Comput 16:2125-95 [Journal] [PubMed]
Kwiatkowski D,Phillips PC,Schmidt P,Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root Journal of Econometrics 54(1):159-178
Lewis CD, Gebber GL, Larsen PD, Barman SM (2001) Long-term correlations in the spike trains of medullary sympathetic neurons. J Neurophysiol 85:1614-22 [Journal] [PubMed]
Lindner B (2004) Interspike interval statistics of neurons driven by colored noise. Phys Rev E Stat Nonlin Soft Matter Phys 69:022901 [Journal] [PubMed]
Liu SC, Chang S (1997) Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. IEEE Trans Image Process 6:1176-84 [Journal] [PubMed]
Lowen SB, Cash SS, Poo M, Teich MC (1997) Quantal neurotransmitter secretion rate exhibits fractal behavior. J Neurosci 17:5666-77 [PubMed]
Lowen SB, Ozaki T, Kaplan E, Saleh BE, Teich MC (2001) Fractal features of dark, maintained, and driven neural discharges in the cat visual system. Methods 24:377-94 [Journal] [PubMed]
Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11:1335-42 [Journal] [PubMed]
Mandelbrot BB (1965) Une classe de processus stochastiques homothetiquesa soi: Application a loi climatologique de H. E. Hurst Comptes Rendus Del academie Des Sciences De Paris 240:3274-3277
Mandelbrot BB (1975) Limit theorems on the self-normalized range for weakly and strongly dependent processes Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31:271-285
Mandelbrot BB, Wallis JR (1968) Noah, Joseph and operational hydrology Water Resources Research 4:909-918
Metzler R, Klafter J (2004) The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics J Phys A: Math Gen 37:R1-R47
Middleton JW, Chacron MJ, Lindner B, Longtin A (2003) Firing statistics of a neuron model driven by long-range correlated noise. Phys Rev E Stat Nonlin Soft Matter Phys 68:021920 [Journal] [PubMed]
Nason (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series Journal of the Royal Statistical Society. Series B. Statistical Methodology 75(5):879-904
Peng C-K , Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL (1993) Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett 70:1343-6 [Journal] [PubMed]
Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley HE (1992) Long-range correlations in nucleotide sequences. Nature 356:168-70 [Journal] [PubMed]
Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49:1685-9 [PubMed]
Pozzorini C, Naud R, Mensi S, Gerstner W (2013) Temporal whitening by power-law adaptation in neocortical neurons. Nat Neurosci 16:942-8 [Journal] [PubMed]
Priestley MB,Subba Rao T (1969) A test for non-stationarity of time-series Journal of the Royal Statistical Society. Series B. Methodological 31:140-149
Rangarajan G,Ding M (2003) Processes with long-range correlations: theory and applications Lecture Notes in Physics, Rangarajan G:Ding M, ed.
Richard A,Talay D (2016) Hölder continuity in the Hurst parameter of functionals of Stochastic Differential Equations driven by fractional Brownian motion arXiv 1605.03475
Sacerdote L,Giraudo MT (2013) Stochastic integrate and fire models: a review on mathematical methods and their applications Stochastic biomathematical models 2058:99-148
Samorodnitsky G (2016) Stochastic processes and long range dependence Springer Series in Operations Research and Financial Engineering
Schwalger T, Droste F, Lindner B (2015) Statistical structure of neural spiking under non-Poissonian or other non-white stimulation. J Comput Neurosci 39:29-51 [Journal] [PubMed]
Schwalger T, Fisch K, Benda J, Lindner B (2010) How noisy adaptation of neurons shapes interspike interval histograms and correlations. PLoS Comput Biol 6:e1001026 [Journal] [PubMed]
Schwalger T, Schimansky-Geier L (2008) Interspike interval statistics of a leaky integrate-and-fire neuron driven by Gaussian noise with large correlation times. Phys Rev E Stat Nonlin Soft Matter Phys 77:031914 [Journal] [PubMed]
Segev R, Benveniste M, Hulata E, Cohen N, Palevski A, Kapon E, Shapira Y, Ben-Jacob E (2002) Long term behavior of lithographically prepared in vitro neuronal networks. Phys Rev Lett 88:118102 [Journal] [PubMed]
Sobie C, Babul A, de Sousa R (2011) Neuron dynamics in the presence of 1/f noise. Phys Rev E Stat Nonlin Soft Matter Phys 83:051912 [Journal] [PubMed]
Sottinen T (2001) Fractional Brownian motion, random walks and binary market models Finance and Stochastics 5(3):343-355
Taqqu MS (1975) Weak convergence to fractional Brownian motion and to the Rosenblatt process Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31:287-302
Taqqu MS,Teverovsky V,Willinger W (1995) Estimators for long-range dependence: an empirical study Fractals 03(04):785-798
Teich M, Turcott R, Siegel R (1996) Temporal correlation in cat striate-cortex neural spike trains IEEE Trans Eng Med Biol 15:79-87
Teich MC (1992) Fractal neuronal firing patterns Single neuron computation, McKenna T:Davis J:Zornetzer SF, ed. pp.589
Teich MC, Heneghan C, Lowen SB, Ozaki T, Kaplan E (1997) Fractal character of the neural spike train in the visual system of the cat. J Opt Soc Am A Opt Image Sci Vis 14:529-46 [PubMed]
Teka W, Marinov TM, Santamaria F (2014) Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput Biol 10:e1003526 [Journal] [PubMed]
   Fractional leaky integrate-and-fire model (Teka et al. 2014) [Model]
Weron R (2002) Estimating long-range dependence: finite sample properties and confidence intervals Physica A. Statistical Mechanics and its Applications 312(1-2):285-299
Willinger W, Taqqu MS, Sherman R, Wilson DV (1997) Self-similarity through high-variability: Statistical analysis of ethernet LAN traffic at the source level IEEE ACM Trans Networking 5:71-86
Zilany MS, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390-412 [Journal] [PubMed]
   Long-term adaptation with power-law dynamics (Zilany et al. 2009) [Model]
   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]
(61 refs)