Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |||||||||||||||||||||||||||||||||||||||||||||||||
Antunes G, Faria da Silva SF, Simoes de Souza FM (2018) Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder. Int J Neural Syst 28:1750058 [Journal] [PubMed]
Appleby PA, Elliott T (2005) Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural Comput 17:2316-36 [Journal] [PubMed] Appleby PA, Elliott T (2006) Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural Comput 18:2414-64 [Journal] [PubMed] Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Frégnac Y, Destexhe A (2006) Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 16:79-97 [Journal] [PubMed]
Baker JL, Olds JL (2007) Theta phase precession emerges from a hybrid computational model of a CA3 place cell. Cogn Neurodyn 1:237-48 [Journal] [PubMed]
Bohte SM, Mozer MC (2007) Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural Comput 19:371-403 [Journal] [PubMed] Bono J, Clopath C (2017) Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nat Commun 8:706 [Journal] [PubMed]
Brader JM, Senn W, Fusi S (2007) Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput 19:2881-912 [Journal] [PubMed] Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940 [Journal] [PubMed] Cai Y, Gavornik JP, Cooper LN, Yeung LC, Shouval HZ (2007) Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus. J Neurophysiol 97:375-86 [Journal] [PubMed] Cavallari S, Panzeri S, Mazzoni A (2014) Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Front Neural Circuits 8:12 [Journal] [PubMed]
Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344-52 [Journal] [PubMed]
Costa RP, Froemke RC, Sjöström PJ, van Rossum MC (2015) Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning. Elife [Journal] [PubMed]
Costa RP, Padamsey Z, D'Amour JA, Emptage NJ, Froemke RC, Vogels TP (2017) Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity. Neuron 96:177-189.e7 [Journal] [PubMed]
Desai NS, Walcott EC (2006) Synaptic bombardment modulates muscarinic effects in forelimb motor cortex. J Neurosci 26:2215-26 [Journal] [PubMed] Esposito U, Giugliano M, Vasilaki E (2014) Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity. Front Comput Neurosci 8:175 [Journal] [PubMed]
Franks KM, Sejnowski TJ (2002) Complexity of calcium signaling in synaptic spines. Bioessays 24:1130-44 [Journal] [PubMed] Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ (2007) Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. J Neurophysiol 97:2851-62 [Journal] [PubMed]
Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput Biol 3:e221 [Journal] [PubMed]
Graupner M, Brunel N (2012) Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc Natl Acad Sci U S A 109:3991-6 [Journal] [PubMed] Häusser M, Mel B (2003) Dendrites: bug or feature? Curr Opin Neurobiol 13:372-83 [PubMed] Hiratani N, Fukai T (2017) Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity. J Neurosci 37:12106-12122 [Journal] [PubMed]
Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996-1002 [Journal] [PubMed]
Kampa BM, Stuart GJ (2006) Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 26:7424-32 [Journal] [PubMed]
Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern 87:373-82 [Journal] [PubMed] Kobayashi T, Shimada Y, Fujiwara K, Ikeguchi T (2017) Reproducing Infra-Slow Oscillations with Dopaminergic Modulation. Sci Rep 7:2411 [Journal] [PubMed]
Legenstein R, Maass W (2011) Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J Neurosci 31:10787-802 [Journal] [PubMed] Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26:10420-9 [Journal] [PubMed]
Maes A, Barahona M, Clopath C (2020) Learning spatiotemporal signals using a recurrent spiking network that discretizes time. PLoS Comput Biol 16:e1007606 [Journal] [PubMed]
Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437-67 [Journal] [PubMed] Mozafari M, Kheradpisheh SR, Masquelier T, Nowzari-Dalini A, Ganjtabesh M (2018) First-Spike-Based Visual Categorization Using Reward-Modulated STDP IEEE Transactions on Neural Networks and Learning Systems :1-13 [Journal]
Pedrosa V, Clopath C (2017) The role of neuromodulators in cortical plasticity. A computational perspective. Front. Synaptic Neurosci. 8:38 [Journal]
Rabinowitch I, Segev I (2006) The endurance and selectivity of spatial patterns of long-term potentiation/depression in dendrites under homeostatic synaptic plasticity. J Neurosci 26:13474-84 [Journal] [PubMed]
Rumsey CC, Abbott LF (2004) Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. J Neurophysiol 91:2273-80 [Journal] [PubMed] Sadeh S, Clopath C, Rotter S (2015) Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS Comput Biol 11:e1004307 [Journal] [PubMed]
Shen YS, Gao H, Yao H (2005) Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. J Comput Neurosci 18:25-39 [Journal] [PubMed] Toyoizumi T, Pfister JP, Aihara K, Gerstner W (2007) Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural Comput 19:639-71 [Journal] [PubMed] Urakubo H, Honda M, Froemke RC, Kuroda S (2008) Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. J Neurosci 28:3310-23 [Journal] [PubMed]
Vasilaki E, Giugliano M (2014) Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PLoS One 9:e84626 [Journal] [PubMed]
Veredas FJ, Vico FJ, Alonso JM (2005) Factors determining the precision of the correlated firing generated by a monosynaptic connection in the cat visual pathway. J Physiol 567:1057-78 [Journal] [PubMed] Watt AJ, Sjöström PJ, Häusser M, Nelson SB, Turrigiano GG (2004) A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nat Neurosci 7:518-24 [Journal] [PubMed] Wilmes KA, Sprekeler H, Schreiber S (2016) Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS Comput Biol 12:e1004768 [Journal] [PubMed]
Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [Journal] [PubMed] Yu X, Shouval HZ, Knierim JJ (2008) A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields. J Neurophysiol 100:983-92 [Journal] [PubMed] Zhou YD, Acker CD, Netoff TI, Sen K, White JA (2005) Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proc Natl Acad Sci U S A 102:19121-5 [Journal] [PubMed] |