Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Fox JJ, McHarg JL, Gilmour RF (2002) Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol 282:H516-30 [PubMed]

   Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007)

References and models cited by this paper

References and models that cite this paper

Brown PB, Malhotra L (1978) A 60-Hz harmonic eliminator. IEEE Trans Biomed Eng 25:392-7 [Journal] [PubMed]
Chudin E, Goldhaber J, Garfinkel A, Weiss J, Kogan B (1999) Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia. Biophys J 77:2930-41 [Journal] [PubMed]
Courtemanche M (1996) Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity. Chaos 6:579-600
Freeman LC, Pacioretty LM, Moise NS, Kass RS, Gilmour RF (1997) Decreased density of Ito in left ventricular myocytes from German shepherd dogs with inherited arrhythmias. J Cardiovasc Electrophysiol 8:872-83 [PubMed]
Garfinkel A, Kim YH, Voroshilovsky O, Qu Z, Kil JR, Lee MH, Karagueuzian HS, Weiss JN, Chen PS (2000) Preventing ventricular fibrillation by flattening cardiac restitution. Proc Natl Acad Sci U S A 97:6061-6 [Journal] [PubMed]
Gilmour RF, Chialvo DR (1999) Electrical restitution, critical mass, and the riddle of fibrillation. J Cardiovasc Electrophysiol 10:1087-9 [PubMed]
Gintant GA (2000) Characterization and functional consequences of delayed rectifier current transient in ventricular repolarization. Am J Physiol Heart Circ Physiol 278:H806-17 [Journal] [PubMed]
Guevara MR, Ward G, Shrier A, Glass L (1984) Electrical alternans and period doubling bifurcations IEEE Comp Cardiol 562:167-170
Jafri MS, Rice JJ, Winslow RL (1998) Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J 74:1149-68 [Journal] [PubMed]
Karma A (1994) Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4:461-472 [Journal] [PubMed]
Koller ML, Riccio ML, Gilmour RF (1998) Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am J Physiol 275:H1635-42 [Journal] [PubMed]
Koller ML, Riccio ML, Gilmour RF (2000) Effects of [K(+)](o) on electrical restitution and activation dynamics during ventricular fibrillation. Am J Physiol Heart Circ Physiol 279:H2665-72 [Journal] [PubMed]
Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 76:351-65 [PubMed]
Liu DW, Gintant GA, Antzelevitch C (1993) Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 72:671-87 [PubMed]
Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res 68:1501-26 [PubMed]
   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]
   Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004) [Model]
Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071-96 [PubMed]
   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]
Nolasco JB, Dahlen RW (1968) A graphic method for the study of alternation in cardiac action potentials. J Appl Physiol 25:191-6 [Journal] [PubMed]
Panfilov AV (1998) Spiral breakup as a model of ventricular fibrillation. Chaos 8:57-64 [Journal] [PubMed]
Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS (1999) Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99:1385-94 [PubMed]
Peters NS, Cabo C (2000) Arrhythmogenic mechanisms: automaticity, triggered activity, and reentry Cardiac Electrophysiology: From Cell to Bedside :345-356
Press WH, Teukolsky SA, Vellerling WT, Flannery BP (1992) Numerical Recipes In C: The Art Of Scientific Computing
Qu Z, Weiss JN, Garfinkel A (1999) Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Am J Physiol 276:H269-83 [Journal] [PubMed]
Riccio ML, Koller ML, Gilmour RF (1999) Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circ Res 84:955-63 [PubMed]
Varro A, Baláti B, Iost N, Takács J, Virág L, Lathrop DA, Csaba L, Tálosi L, Papp JG (2000) The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. J Physiol 523 Pt 1:67-81 [PubMed]
Wilkinson DG, Bhatt S, Herrmann BG (1990) Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343:657-9 [Journal] [PubMed]
Winslow RL, Rice J, Jafri S, Marbán E, O'Rourke B (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84:571-86 [PubMed]
   Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000) [Model]
Wu TJ, Yashima M, Doshi R, Kim YH, Athill CA, Ong JJ, Czer L, Trento A, Blanche C, Kass RM, Garfinkel A, Weiss JN, Fishbein MC, Karagueuzian HS, Chen PS (1999) Relation between cellular repolarization characteristics and critical mass for human ventricular fibrillation. J Cardiovasc Electrophysiol 10:1077-86 [PubMed]
Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C (2001) Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol Heart Circ Physiol 281:H689-97
Zygmunt AC, Goodrow RJ, Antzelevitch C (2000) I(NaCa) contributes to electrical heterogeneity within the canine ventricle. Am J Physiol Heart Circ Physiol 278:H1671-8 [Journal] [PubMed]
Greenstein JL, Hinch R, Winslow RL (2006) Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys J 90:77-91 [Journal] [PubMed]
   Excitation-contraction coupling in an integrative heart cell model (Greenstein et al 2006) [Model]
Greenstein JL, Winslow RL (2002) An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. Biophys J 83:2918-45 [Journal] [PubMed]
Gudzenko V, Shiferaw Y, Savalli N, Vyas R, Weiss JN, Olcese R (2007) Influence of channel subunit composition on L-type Ca2+ current kinetics and cardiac wave stability. Am J Physiol Heart Circ Physiol 293:H1805-15 [Journal] [PubMed]
Hund TJ, Rudy Y (2004) Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110:3168-74 [Journal] [PubMed]
   A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004) [Model]
Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie LH, Yang MJ, Chen PS, Restrepo JG, Karma A, Garfinkel A, Qu Z, Weiss JN (2008) A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys J 94:392-410 [Journal] [PubMed]
Zhu ZI, Clancy CE (2007) L-type Ca2+ channel mutations and T-wave alternans: a model study. Am J Physiol Heart Circ Physiol 293:H3480-9 [Journal] [PubMed]
   Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007) [Model]
(35 refs)