Rate model of a cortical RS-FS-LTS network (Hayut et al. 2011)

 Download zip file 
Help downloading and running models
A rate model of cortical networks composed of RS, FS and LTS neurons. Synaptic depression is modelled according to the Tsodyks-Markram scheme.
1 . Hayut I, Fanselow EE, Connors BW, Golomb D (2011) LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS Comput Biol 7:e1002248 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Gap Junctions:
Simulation Environment: C or C++ program;
Model Concept(s): Short-term Synaptic Plasticity; Rate-coding model neurons;
Implementer(s): Golomb, David [golomb at bgu.ac.il];
R: beta=0.11 theta=0.10 Mx=0.1
L: beta=0.32 theta=0.05 Mx=0.2
F: beta=0.35 theta=0.28 Mx=0.2
IappF=0.237 nu=0.75
RR: gg=5.0 taus=2.0 kf=1.0 UV=0.21 taur=463.0 tauf=0.0
LR: gg=7.0 taus=2.0 kf=1.0 UV=0.09 taur=0.0 tauf=670.0
RL: gg=35.0 taus=6.3 kf=1.0 UV=0.3 taur=1250.0 tauf=0.0
FR: gg=18.0 taus=2.0 kf=1.0 UV=0.3 taur=227.0 tauf=0.0
RF: gg=38.0 taus=2.0 kf=1.0 UV=0.14 taur=875.0 tauf=0.0
FF: gg=5.0 taus=2.0 kf=1.0 UV=0.3 taur=400.0 tauf=0.0
FL: gg=10.0 taus=2.0 kf=1.0 UV=0.3 taur=400.0 tauf=0.0
LF: gg=20.0 taus=2.0 kf=1.0 UV=0.3 taur=400.0 tauf=0.0
tghlin=l sfact=n nuif=i sig=100.0
deltat=0.02 nt=500000
twrite=10 tmcol=500000 ttrans=100000 tupdown=100000
method=r incond=r fpcal=y smforce=l

sRR xRR uRR   sLR xLR uLR   sRL xRL uRL
0.0 1.0 0.21  0.0 1.0 0.09  0.0 1.0 0.3
sFR xFR uFR   sRF xRF uRF   sFF xFF uFF
0.0 1.0 0.3   0.0 1.0 0.14  0.0 1.0 0.3
sFL xFL uFL   sLF xLF uLF 
0.0 1.0 0.3   0.0 1.0 0.3

tghlin    : t - tanh, l - lin, s - sig.
sfact     : y - with (1-s), n - without (1-s).
nuif      : i - IappF, n - nu.
method    : r - Runge-Kutta 4, t - Runge-Kutta 2, e - Euler.
incond    : r - read.
fpcal     : y - yes, n - no.
smforce   : p - always print (sm=0), n - always no print (sm=1),
           l - leave as is.

NEURON Iapp parmin=0.1 parmax=1.6 npar=1000 nrepeat=1