Models that contain the Cell : Honeybee kenyon cell

Re-display model names without descriptions
    Models   Description
1. I A in Kenyon cells resemble Shaker currents (Pelz et al 1999)
Cultured Kenyon cells from the mushroom body of the honeybee, Apis mellifera, show a voltage-gated, fast transient K1 current that is sensitive to 4-aminopyridine, an A current. The kinetic properties of this A current and its modulation by extracellular K1 ions were investigated in vitro with the whole cell patch-clamp technique. The A current was isolated from other voltage-gated currents either pharmacologically or with suitable voltage-clamp protocols. Hodgkin- and Huxley-style mathematical equations were used for the description of this current and for the simulation of action potentials in a Kenyon cell model. The data of the A current were incorporated into a reduced computational model of the voltage-gated currents of Kenyon cells. In addition, the model contained a delayed rectifier K current, a Na current, and a leakage current. The model reproduces several experimental features and makes predictions. See paper for details and results.
2. Kenyon cells in the honeybee (Wustenberg et al 2004)
The mushroom body of the insect brain is an important locus for olfactory information processing and associative learning. ... Current- and voltage-clamp analyses were performed on cultured Kenyon cells from honeybees. ... Voltage-clamp analyses characterized a fast transient Na+ current (INa), a delayed rectifier K+ current (IK,V) and a fast transient K+ current (IK,A). Using the neurosimulator SNNAP, a Hodgkin-Huxley type model was developed and used to investigate the roles of the different currents during spiking. The model led to the prediction of a slow transient outward current (IK,ST) that was subsequently identified by reevaluating the voltage-clamp data. Simulations indicated that the primary currents that underlie spiking are INa and IK,V, whereas IK,A and IK,ST primarily determined the responsiveness of the model to stimuli such constant or oscillatory injections of current. See paper for more details.

Re-display model names without descriptions