Models that contain the Model Concept : Locking, mixed mode

Re-display model names without descriptions
    Models   Description
1.  Control of vibrissa motoneuron firing (Harish and Golomb 2010)
We construct and analyze a single-compartment, conductance-based model of vibrissa motoneurons. Low firing rates are supported in extended regimes by adaptation currents and the minimal firing rate decreases with the persistent sodium conductance gNaP and increases with M-potassium and h-cation conductances. Suprathreshold resonance results from the locking properties of vMN firing to stimuli and from reduction of firing rates at low frequencies by slow M and afterhyperpolarization potassium conductances. h conductance only slightly affects the suprathreshold resonance. When a vMN is subjected to a small periodic CPG input, serotonergically induced gNaP elevation may transfer the system from quiescence to a firing state that is highly locked to the CPG input.
2.  Phase locking in leaky integrate-and-fire model (Brette 2004)
"This shows the phase-locking structure of a LIF driven by a sinusoidal current. When the current crosses the threshold (a<3), the model almost always phase locks (in a measure-theoretical sense)."
3.  Phase-locking analysis with transcranial magneto-acoustical stimulation (Yuan et al 2017)
"Transcranial magneto-acoustical stimulation (TMAS) uses ultrasonic waves and a static magnetic field to generate electric current in nerve tissues for the purpose of modulating neuronal activities. It has the advantage of high spatial resolution and penetration depth. Neuronal firing rhythms carry and transmit nerve information in neural systems. In this study, we investigated the phase-locking characteristics of neuronal firing rhythms with TMAS based on the Hodgkin-Huxley neuron model. The simulation results indicate that the modulation frequency of ultrasound can affect the phase-locking behaviors. The results of this study may help us to explain the potential firing mechanism of TMAS."

Re-display model names without descriptions