Models that contain the Model Concept : Information transfer

Re-display model names without descriptions
    Models   Description
1. A dendritic disinhibitory circuit mechanism for pathway-specific gating (Yang et al. 2016)
"While reading a book in a noisy café, how does your brain ‘gate in’ visual information while filtering out auditory stimuli? Here we propose a mechanism for such flexible routing of information flow in a complex brain network (pathway-specific gating), tested using a network model of pyramidal neurons and three classes of interneurons with connection probabilities constrained by data. We find that if inputs from different pathways cluster on a pyramidal neuron dendrite, a pathway can be gated-on by a disinhibitory circuit motif. ..."
2. Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
This code implements a composite model of Parkinson's disease (PD). The composite model consists of a leaky integrate-and-fire spiking neuronal network model being driven by output from a neural field model (instead of the more usual white noise drive). Three different sets of parameters were used for the field model: one with basal ganglia parameters based on data from healthy individuals, one based on data from individuals with PD, and one purely thalamocortical model. The aim of this model is to explore how the different dynamical patterns in each each of these field models affects the activity in the network model.
3. Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
We study how synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. We implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.
4. Cortical oscillations and the basal ganglia (Fountas & Shanahan 2017)
"Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. ..."
5. Functional impact of dendritic branch point morphology (Ferrante et al., 2013)
" ... Here, we first quantified the morphological variability of branch points from two-photon images of rat CA1 pyramidal neurons. We then investigated the geometrical features affecting spike initiation, propagation, and timing with a computational model validated by glutamate uncaging experiments. The results suggest that even subtle membrane readjustments at branch point could drastically alter the ability of synaptic input to generate, propagate, and time action potentials."
6. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
"Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multi-compartment neurons (pyramidal, basket and oriens-lacunosum moleculare, OLM, cells) generated theta and gamma oscillations from intrinsic network dynamics: basket cells primarily generated gamma and amplified theta, while OLM cells strongly contributed to theta. ..."
7. Microsaccades and synchrony coding in the retina (Masquelier et al. 2016)
We show that microsaccades (MS) enable efficient synchrony-based coding among the primate retinal ganglion cells (RGC). We find that each MS causes certain RGCs to fire synchronously, namely those whose receptive fields contain contrast edges after the MS. The emitted synchronous spike volley thus rapidly transmits the most salient edges of the stimulus. We demonstrate that the readout could be done rapidly by simple coincidence-detector neurons, and that the required connectivity could emerge spontaneously with spike timing-dependent plasticity.
8. Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)
This model is an extension of a model (<a href="">138379</a>) recently published in Frontiers in Computational Neuroscience. This model consists of 4700 event-driven, rule-based neurons, wired according to anatomical data, and driven by both white-noise synaptic inputs and a sensory signal recorded from a rat thalamus. Its purpose is to explore the effects of cortical damage, along with the repair of this damage via a neuroprosthesis.
9. Relative spike time coding and STDP-based orientation selectivity in V1 (Masquelier 2012)
Phenomenological spiking model of the cat early visual system. We show how natural vision can drive spike time correlations on sufficiently fast time scales to lead to the acquisition of orientation-selective V1 neurons through STDP. This is possible without reference times such as stimulus onsets, or saccade landing times. But even when such reference times are available, we demonstrate that the relative spike times encode the images more robustly than the absolute ones.
10. Sensitivity of noisy neurons to coincident inputs (Rossant et al. 2011)
"Two distant or coincident spikes are injected into a noisy balanced leaky integrate-and-fire neuron. The PSTH of the neuron in response to these inputs is calculated along with the extra number of spikes in the two cases. This number is higher for the coincident spikes, showing the sensitivity of a noisy neuron to coincident inputs."
11. Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
"... In this work, we address the problem of understanding the cortical processing of color information with a possible mechanism of the development of the patchy distribution of color selectivity via computational modeling. ... Our model of the early visual system consists of multiple topographically-arranged layers of excitatory and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity between layers. Layers are arranged based on anatomy of early visual pathways, and include a retina, lateral geniculate nucleus, and layered neocortex. ... After training with natural images, the neurons display heightened sensitivity to specific colors. ..."
12. STDP allows fast rate-modulated coding with Poisson-like spike trains (Gilson et al. 2011)
The model demonstrates that a neuron equipped with STDP robustly detects repeating rate patterns among its afferents, from which the spikes are generated on the fly using inhomogenous Poisson sampling, provided those rates have narrow temporal peaks (10-20ms) - a condition met by many experimental Post-Stimulus Time Histograms (PSTH).
13. Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
"... We sought to measure how the activity of the network alters information flow from inputs to output patterns. Information handling by the network reflected the degree of internal connectivity. ... With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. ... At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing."
14. Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018)
Mammalian thalamocortical relay (TCR) neurons switch their firing activity between a tonic spiking and a bursting regime. In a combined experimental and computational study, we investigated the features in the input signal that single spikes and bursts in the output spike train represent and how this code is influenced by the membrane voltage state of the neuron. Identical frozen Gaussian noise current traces were injected into TCR neurons in rat brain slices to adjust, fine-tune and validate a three-compartment TCR model cell (Destexhe et al. 1998, accession number 279). Three currents were added: an h-current (Destexhe et al. 1993,1996, accession number 3343), a high-threshold calcium current and a calcium- activated potassium current (Huguenard & McCormick 1994, accession number 3808). The information content carried by the various types of events in the signal as well as by the whole signal was calculated. Bursts phase-lock to and transfer information at lower frequencies than single spikes. On depolarization the neuron transits smoothly from the predominantly bursting regime to a spiking regime, in which it is more sensitive to high-frequency fluctuations. Finally, the model was used to in the more realistic “high-conductance state” (Destexhe et al. 2001, accession number 8115), while being stimulated with a Poisson input (Brette et al. 2007, Vogels & Abbott 2005, accession number 83319), where fluctuations are caused by (synaptic) conductance changes instead of current injection. Under “standard” conditions bursts are difficult to initiate, given the high degree of inactivation of the T-type calcium current. Strong and/or precisely timed inhibitory currents were able to remove this inactivation.

Re-display model names without descriptions