Models that contain the Neuron : Neostriatum spiny indirect pathway neuron

Re-display model names without descriptions
    Models   Description
1. Biologically Constrained Basal Ganglia model (BCBG model) (Lienard, Girard 2014)
We studied the physiology and function of the basal ganglia through the design of mean-field models of the whole basal ganglia. The parameterizations are optimized with multi-objective evolutionary algorithm to respect best a collection of numerous anatomical data and electrophysiological data. The main outcomes of our study are: • The strength of the GPe to GPi/SNr connection does not support opposed activities in the GPe and GPi/SNr. • STN and MSN target more the GPe than the GPi/SNr. • Selection arises from the structure of the basal ganglia, without properly segregated direct and indirect pathways and without specific inputs from pyramidal tract neurons of the cortex. Selection is enhanced when the projection from GPe to GPi/SNr has a diffuse pattern.
2. Cortico-striatal plasticity in medium spiny neurons (Gurney et al 2015)
In the associated paper (Gurney et al, PLoS Biology, 2015) we presented a computational framework that addresses several issues in cortico-striatal plasticity including spike timing, reward timing, dopamine level, and dopamine receptor type. Thus, we derived a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then showed this model produces the predicted activity changes necessary for learning and extinction in an operant task. Moreover, we showed the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. The model was validated in a wider setting of action selection in basal ganglia, showing how it could account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. The code supplied here allows reproduction of the proposed process of learning in medium spiny neurons, giving the results of Figure 7 of the paper.
3. Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)
The endocannabinoid (eCB) system is considered involved in synaptic depression. Recent reports have also linked eCBs to synaptic potentiation. However it is not known how eCB signaling may support such bidirectionality. To question the mechanisms of this phenomena in spike-timing dependent plasticity (STDP) at corticostriatal synapses, we combined electrophysiology experiments with biophysical modeling. We demonstrate that STDP is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Therefore, just like neurotransmitters glutamate or GABA, eCB form a bidirectional system.
4. Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
"We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. ... "
5. Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)
This study investigates the mechanisms that are affected in the striatal network after dopamine depletion and identifies potential therapeutic targets to restore normal activity.
6. Synchronicity of fast-spiking interneurons balances medium-spiny neurons (Damodaran et al. 2014)
This study investigates the role of feedforward and feedback inhibition in maintaining the balance between D1 and D2 MSNs of the striatum. The synchronized firing of FSIs are found to be critical in this mechanism and specifically the gap junction connections between FSIs.

Re-display model names without descriptions