Models that contain the Cell : Abstract integrate-and-fire fractional leaky neuron

Re-display model names without descriptions
    Models   Description
1.  A simple model of neuromodulatory state-dependent synaptic plasticity (Pedrosa and Clopath, 2016)
The model is used to illustrate the role of neuromodulators in cortical plasticity. The model consists of a feedforward network with 1 postsynaptic neuron with plastic synaptic weights. These weights are updated through a spike-timing-dependent plasticity rule. "First, we explore the ability of neuromodulators to gate plasticity by reshaping the learning window for spike-timing-dependent plasticity. Using a simple computational model, we implement four different learning rules and demonstrate their effects on receptive field plasticity. We then compare the neuromodulatory effects of upregulating learning rate versus the effects of upregulating neuronal activity. "
2.  Fractional leaky integrate-and-fire model (Teka et al. 2014)
We developed the Fractional Leaky Integrate-and-Fire model that can produce downward and upward spike time adaptions observed on pyramidal cells.The adaptation emerges from the fractional exponent of the voltage dynamics.
3.  Hodgkin–Huxley model with fractional gating (Teka et al. 2016)
We use fractional order derivatives to model the kinetic dynamics of the gate variables for the potassium and sodium conductances of the Hodgkin-Huxley model. Our results show that power-law dynamics of the different gate variables result in a wide range of action potential shapes and spiking patterns, even in the case where the model was stimulated with constant current. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
4.  Hybrid oscillatory interference / continuous attractor NN of grid cell firing (Bush & Burgess 2014)
Matlab code to simulate a hybrid oscillatory interference - continuous attractor network model of grid cell firing in pyramidal and stellate cells of rodent medial entorhinal cortex

Re-display model names without descriptions