Models that contain the Cell : Abstract single compartment conductance based cell

Re-display model names without descriptions
    Models   Description
1.  An ion-based model for swelling of neurons and astrocytes (Hubel & Ullah 2016)
The programs describe ion dynamics and osmosis-driven cellular swelling. “code_fig3.ode” shows a scenario of permanent cessation of energy supply / Na/K-pump activity, and the induced transition from normal conditions to the Donnan equilibrium for an isolated neuron and its extracellular space. “code_Fig7.ode” shows spreading depolarization induced by an interruption of energy supply in a model consisting of a neuron, a glia cell and the extracellular space. The simulations show the evolution of ion concentrations, Nernst potentials, the membrane potential, gating variables and cellular volumes.
2.  Anoxic depolarization, recovery: effect of brain regions and extracellular space (Hubel et al. 2016)
The extent of anoxic depolarization (AD), the initial electrophysiological event during ischemia, determines the degree of brain region-specific neuronal damage. Neurons in higher brain regions have stronger ADs and are more easily injured than neurons in lower brain region. The mechanism leading to such differences is not clear. We use a computational model based on a Hodgkin-Huxley framework which includes neural spiking dynamics, processes of ion accumulation, and homeostatic mechanisms like vascular coupling and Na/K-exchange pumps. We show that a large extracellular space (ECS) explains the recovery failure in high brain regions. A phase-space analysis shows that with a large ECS recovery from AD through potassium regulation is impossible. The code 'time_series.ode' can be used to simulate AD for a large and a small ECS and show the different behaviors. The code ‘continuations.ode’ can be used to show the fixed point structure. Depending on our choice of large or small ECS the fixed point curve implies the presence/absence of a recovery threshold that defines the potassium clearance demand.
3.  CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
This paper shows that persistent sodium current critically contributes to the subthreshold nonlinear dynamics of CA1 pyramidal neurons and promotes rapidly reversible conversion between place-cell and silent-cell in the hippocampus. A simple model built with realistic axo-somatic voltage-gated sodium channels in CA1 (Carter et al., 2012; Neuron 75, 1081–1093) demonstrates that the biophysics of persistent sodium current is sufficient to explain the synaptic amplification effects. A full model built previously (Grienberger et al., 2017; Nature Neuroscience, 20(3): 417–426) with detailed morphology, ion channel types and biophysical properties of CA1 place cells naturally reproduces the steep voltage dependence of synaptic responses.
4.  Distinct current modules shape cellular dynamics in model neurons (Alturki et al 2016)
" ... We hypothesized that currents are grouped into distinct modules that shape specific neuronal characteristics or signatures, such as resting potential, sub-threshold oscillations, and spiking waveforms, for several classes of neurons. For such a grouping to occur, the currents within one module should have minimal functional interference with currents belonging to other modules. This condition is satisfied if the gating functions of currents in the same module are grouped together on the voltage axis; in contrast, such functions are segregated along the voltage axis for currents belonging to different modules. We tested this hypothesis using four published example case models and found it to be valid for these classes of neurons. ..."
5.  H-currents effect on the fluctuation of gamma/beta oscillations (Avella-Gonzalez et al., 2015)
This model was designed to study the impact of H-currents on the dynamics of cortical oscillations, and in paticular on the occurrence of high and low amplitude episodes (HAE, LAE) in network oscillations. The H-current is a slow, hyperpolarization-activated, depolarizing current that contributes to neuronal resonance and membrane potential. We characterized amplitude fluctuations in network oscillations by measuring the average durations of HAEs and LAEs, and explored how these were modulated by trains of external spikes, both in the presence and absence of H-channels. We looked at HAE duration, the frequency and power of network oscillations, and the effect of H-channels on the temporal voltage profile in single cells. We found that H-currents increased the oscillation frequency and, in combination with external spikes, representing input from areas outside the network, strongly decreased the synchrony of firing. As a consequence, the oscillation power and the duration of episodes during which the network exhibited high-amplitude oscillations were greatly reduced in the presence of H-channels.
6.  Hodgkin–Huxley model with fractional gating (Teka et al. 2016)
We use fractional order derivatives to model the kinetic dynamics of the gate variables for the potassium and sodium conductances of the Hodgkin-Huxley model. Our results show that power-law dynamics of the different gate variables result in a wide range of action potential shapes and spiking patterns, even in the case where the model was stimulated with constant current. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
7.  Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
"How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K+]o) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled ..."
8.  Midbrain torus semicircularis neuron model (Aumentado-Armstrong et al. 2015)
This paper investigates how midbrain electrosensory neurons give invariant responses to natural communication stimuli. A model explains that such invariance can be achieved by combining afferent input from ON and OFF cells.
9.  Phase response theory in sparsely + strongly connected inhibitory NNs (Tikidji-Hamburyan et al 2019)
10.  Single E-I oscillating network with amplitude modulation (Avella Gonzalez et al. 2012)
"... Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with episodes of high amplitude (HAE) alternating with episodes of low amplitude (LAE). ... Here, we show that transitions between HAE and LAE in the alpha/beta frequency band occur in a generic neuronal network model consisting of interconnected inhibitory (I) and excitatory (E) cells that are externally driven by sustained depolarizing currents(cholinergic input) and trains of action potentials that activate excitatory synapses. In the model, action potentials onto inhibitory cells represent input from other brain areas and desynchronize network activity, being crucial for the emergence of amplitude fluctuations. ..."

Re-display model names without descriptions