Models that contain the Model Concept : Membrane Properties

(Membrane properties are quantified in the values of parameters such as the capacitance and/or current densities where the density is the appropriate quantity per membrane area.)
Re-display model names without descriptions
    Models   Description
1.  CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
This paper shows that persistent sodium current critically contributes to the subthreshold nonlinear dynamics of CA1 pyramidal neurons and promotes rapidly reversible conversion between place-cell and silent-cell in the hippocampus. A simple model built with realistic axo-somatic voltage-gated sodium channels in CA1 (Carter et al., 2012; Neuron 75, 1081–1093) demonstrates that the biophysics of persistent sodium current is sufficient to explain the synaptic amplification effects. A full model built previously (Grienberger et al., 2017; Nature Neuroscience, 20(3): 417–426) with detailed morphology, ion channel types and biophysical properties of CA1 place cells naturally reproduces the steep voltage dependence of synaptic responses.
2.  Disentangling astroglial physiology with a realistic cell model in silico (Savtchenko et al 2018)
"Electrically non-excitable astroglia take up neurotransmitters, buffer extracellular K+ and generate Ca2+ signals that release molecular regulators of neural circuitry. The underlying machinery remains enigmatic, mainly because the sponge-like astrocyte morphology has been difficult to access experimentally or explore theoretically. Here, we systematically incorporate multi-scale, tri-dimensional astroglial architecture into a realistic multi-compartmental cell model, which we constrain by empirical tests and integrate into the NEURON computational biophysical environment. This approach is implemented as a flexible astrocyte-model builder ASTRO. As a proof-of-concept, we explore an in silico astrocyte to evaluate basic cell physiology features inaccessible experimentally. ..."
3.  Electrotonic transform and EPSCs for WT and Q175+/- spiny projection neurons (Goodliffe et al 2018)
This model achieves electrotonic transform and computes mean inward and outward attenuation from 0 to 500 Hz input; and randomly activates synapses along dendrites to simulate AMPAR mediated EPSCs. For electrotonic analysis, in Elec folder, the entry file is MSNelec_transform.hoc. For EPSC simulation, in Syn folder, the entry file is randomepsc.hoc. Run read_EPSCsims_mdb_alone.m next with the simulated parameter values specified to compute the mean EPSC.
4.  Function and energy constrain neuronal biophysics in coincidence detection (Remme et al 2018)
" ... We use models of conductance-based neurons constrained by experimentally observed characteristics with parameters varied within a physiologically realistic range. Our study shows that neuronal design of MSO cells does not compromise on function, but favors energetically less costly cell properties where possible without interfering with function."
5.  Human L2/3 pyramidal cells with low Cm values (Eyal et al. 2016)
The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance (Cm) of ~0.5 µF/cm2, half of the commonly accepted “universal” value (~1 µF/cm2) for biological membranes. This finding was predicted by fitting in vitro voltage transients to theoretical transients then validated by direct measurement of Cm in nucleated patch experiments. Models of 3D reconstructed HL2/3 PCs demonstrated that such low Cm value significantly enhances both synaptic charge-transfer from dendrites to soma and spike propagation along the axon. This is the first demonstration that human cortical neurons have distinctive membrane properties, suggesting important implications for signal processing in human neocortex.
6.  Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
We are investigating how dopaminergic modulation of single channels can be combined to make the D1R possitive MSN more excitable. We also connect multiple channels to substrates of a dopamine induced subcellular cascade to highlight that the classical pathway is too slow to explain DA induced kinetics in the subsecond range (Howe and Dombeck, 2016. doi: 10.1038/nature18942)

Re-display model names without descriptions