Models that contain the Neurotransmitter : Ions

Re-display model names without descriptions
    Models   Description
1.  A model of neurovascular coupling and the BOLD response (Mathias et al 2017, Kenny et al 2018)
Here a lumped parameter numerical model of a neurovascular unit is presented, representing an intercellular communication system based on ion exchange through pumps and channels between neurons, astrocytes, smooth muscle cells, endothelial cells, and the spaces between these cells: the synaptic cleft between the neuron and astrocyte, the perivascular space between the astrocyte and SMC, and the extracellular space surrounding the cells. The model contains various cellular and chemical pathways such as potassium, astrocytic calcium, and nitric oxide. The model is able to simulate neurovascular coupling, the process characterised by an increase in neuronal activity followed by a rapid dilation of local blood vessels and hence increased blood supply providing oxygen and glucose to cells in need. The model also incorporates the BOLD response.
2.  An ion-based model for swelling of neurons and astrocytes (Hubel & Ullah 2016)
The programs describe ion dynamics and osmosis-driven cellular swelling. “code_fig3.ode” shows a scenario of permanent cessation of energy supply / Na/K-pump activity, and the induced transition from normal conditions to the Donnan equilibrium for an isolated neuron and its extracellular space. “code_Fig7.ode” shows spreading depolarization induced by an interruption of energy supply in a model consisting of a neuron, a glia cell and the extracellular space. The simulations show the evolution of ion concentrations, Nernst potentials, the membrane potential, gating variables and cellular volumes.
3.  Application of a common kinetic formalism for synaptic models (Destexhe et al 1994)
Application to AMPA, NMDA, GABAA, and GABAB receptors is given in a book chapter. The reference paper synthesizes a comprehensive general description of synaptic transmission with Markov kinetic models. This framework is applicable to modeling ion channels, synaptic release, and all receptors. Please see the references for more details. A simple introduction to this method is given in a seperate paper Destexhe et al Neural Comput 6:14-18 , 1994). More information and papers at and through email:
4.  Ca(2+) oscillations based on Ca-induced Ca-release (Dupont et al 1991)
We consider a simple, minimal model for signal-induced Ca2+ oscillations based on Ca(2+)-induced Ca2+ release. The model takes into account the existence of two pools of intracellular Ca2+, namely, one sensitive to inositol 1,4,5 trisphosphate (InsP3) whose synthesis is elicited by the stimulus, and one insensitive to InsP3. See paper for more and details.
5.  Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) XPP
This is an XPP version of the classic KCa channel from Moczydlowski and Latorre 1983.
6.  Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
"... In order to investigate the respective roles of synaptic interactions and nonsynaptic mechanisms in seizure transitions, we developed a computational model of hippocampal cells, involving the extracellular space, realistic dynamics of Na+, K+, Ca2+ and Cl - ions, glial uptake and extracellular diffusion mechanisms. We show that the network behavior with fixed ionic concentrations may be quite different from the neurons’ behavior when more detailed modeling of ionic dynamics is included. In particular, we show that in the extended model strong discharge of inhibitory interneurons may result in long lasting accumulation of extracellular K+, which sustains the depolarization of the principal cells and causes their pathological discharges. ..."
7.  Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008)
"... To examine the effect of glial K+ uptake, we used a model neuron equipped with Na+, K+, Ca2+ and Cl− conductances, ion pumps and ion exchangers, surrounded by interstitial space and glia. The glial membrane was either “passive”, incorporating only leak channels and an ion exchange pump, or it had rectifying K+ channels. We computed ion fluxes, concentration changes and osmotic volume changes. ... We conclude that voltage gated K+ currents can boost the effectiveness of the glial “potassium buffer” and that this buffer function is important even at moderate or low levels of excitation, but especially so in pathological states."
8.  Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008)
"Globus pallidus (GP) neurons recorded in brain slices show significant variability in intrinsic electrophysiological properties. To investigate how this variability arises, we manipulated the biophysical properties of GP neurons using computer simulations. ... Our results indicated that most of the experimental variability could be matched by varying conductance densities, which we confirmed with additional partial block experiments. Further analysis resulted in two key observations: (1) each voltage-gated conductance had effects on multiple measures such as action potential waveform and spontaneous or stimulated spike rates; and (2) the effect of each conductance was highly dependent on the background context of other conductances present. In some cases, such interactions could reverse the effect of the density of one conductance on important excitability measures. ..."
9.  Hodgkin–Huxley model with fractional gating (Teka et al. 2016)
We use fractional order derivatives to model the kinetic dynamics of the gate variables for the potassium and sodium conductances of the Hodgkin-Huxley model. Our results show that power-law dynamics of the different gate variables result in a wide range of action potential shapes and spiking patterns, even in the case where the model was stimulated with constant current. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
10.  Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
"We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. ... "
11.  Multiscale model of olfactory receptor neuron in mouse (Dougherty 2009)
Collection of XPP (.ode) files simulating the signal transduction (slow) and action potential (fast) currents in the olfactory receptor neuron of mouse. Collection contains model configured for dual odorant pulse delivery and model configured for prolonged odorant delivery. For those interested more in transduction processes, each whole cell recording model comes with a counter part file configured to show just the slow transduction current for ease of use and convenience. These transduction-only models typically run faster than the full multi-scale models but do not demonstrate action potentials.
12.  Phase response curve of a globus pallidal neuron (Fujita et al. 2011)
We investigated how changes in ionic conductances alter the phase response curve (PRC) of a globus pallidal (GP) neuron and stability of a synchronous activity of a GP network, using a single-compartmental conductance-based neuron model. The results showed the PRC and the stability were influenced by changes in the persistent sodium current, the Kv3 potassium, the M-type potassium and the calcium-dependent potassium current.
13.  Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) (XPP)
Detailed Markov model of IKs (the slow delayed rectifier K+ current) is supplied here in XPP. The model is compared to experiment in the paper. The role of IKs in disease and drug treatments is elucidated (the prevention of excessive action potential prolongation and development of arrhythmogenic early afterdepolarizations). See also modeldb accession number 55748 code and reference for more and details. This XPP version of the model reproduces Figure 3C in the paper by default. These model files were submitted by: Dr. Sheng-Nan Wu, Han-Dong Chang, Jiun-Shian Wu Department of Physiology National Cheng Kung University Medical College
14.  Simulation study of Andersen-Tawil syndrome (Sung et al 2006)
Patients with Andersen-Tawil syndrome (ATS) mostly have mutations on the KCNJ2 gene producing loss of function or dominant-negative suppression of the inward rectifier K(+) channel Kir2.1. However, clinical manifestations of ATS including dysmorphic features, periodic paralysis (hypo-, hyper-, or normokalemic), long QT, and ventricular arrhythmias (VA) are considerably variable. Using a modified dynamic Luo-Rudy simulation model of cardiac ventricular myocyte, we elucidate the mechanisms of VA in ATS. We adopted a kinetic model of KCNJ2 in which channel block by Mg(+2) and spermine was incorporated. In this study, we attempt to examine the effects of KCNJ2 mutations on the ventricular action potential (AP), single-channel Markovian models were reformulated and incorporated into the dynamic Luo-Rudy model for rapidly and slowly delayed rectifying K(+) currents and KCNJ2 channel. During pacing at 1.0 Hz with [K(+)]o at 5.4 mM, a stepwise 10% reduction of Kir2.1 channel conductance progressively prolonged the terminal repolarization phase of AP along with gradual depolarization of the resting membrane potential (RMP). At 90% reduction, early after- depolarizations (EADs) became inducible and RMP was depolarized to -55.0 mV (control: -90.1 mV) followed by emergence of spontaneous action potentials (SAP). Both EADs and SAP were facilitated by a decrease in [K(+)]o and suppressed by increase in [K(+)]o. beta-adrenergic stimulation enhanced delayed after-depolarizations (DADs) and could also facilitate EADs as well as SAP in the setting of low [K(+)]o and reduced Kir2.1 channel conductance. In conclusion, the spectrum of VA in ATS includes (1) triggered activity mediated by EADs and/or DADs, and (2) abnormal automaticity manifested as SAP. These VA can be aggravated by a decrease in [K(+)]o and beta-adrenergic stimulation, and may potentially induce torsades de pointes and cause sudden death. In patients with ATS, the hypokalemic form of periodic paralysis should have the highest propensity to VA especially during physical activities.
15.  Spiking GridPlaceMap model (Pilly & Grossberg, PLoS One, 2013)
Development of spiking grid cells and place cells in the entorhinal-hippocampal system to represent positions in large spaces
16.  Spontaneous calcium oscillations in astrocytes (Lavrentovich and Hemkin 2008)
" ... We propose here a mathematical model of how spontaneous Ca2+ oscillations arise in astrocytes. This model uses the calcium-induced calcium release and inositol cross-coupling mechanisms coupled with a receptor-independent method for producing inositol (1,4,5)-trisphosphate as the heart of the model. By computationally mimicking experimental constraints we have found that this model provides results that are qualitatively similar to experiment."
17.  Squid axon: Bifurcation analysis of mode-locking (Lee & Kim 2006) (Gangal & Dar 2014)
The model was built with the purpose of finding mode lockings between the input sinusoidal current frequency and the output frequency. Phase plase plane analysis, spike statistics, mode locking formulation etc. can be done with the help of the model. Any additional functionality can be added as the base code return the correct action potential values.
18.  Using NEURON for reaction-diffusion modeling of extracellular dynamics (Newton et al 2018)
Development of credible clinically-relevant brain simulations has been slowed due to a focus on electrophysiology in computational neuroscience, neglecting the multiscale whole-tissue modeling approach used for simulation in most other organ systems. We have now begun to extend the NEURON simulation platform in this direction by adding extracellular modeling. NEURON's extracellular reaction-diffusion is supported by an intuitive Python-based where/who/what command sequence, derived from that used for intracellular reaction diffusion, to support coarse-grained macroscopic extracellular models. This simulation specification separates the expression of the conceptual model and parameters from the underlying numerical methods. In the volume-averaging approach used, the macroscopic model of tissue is characterized by free volume fraction—the proportion of space in which species are able to diffuse, and tortuosity—the average increase in path length due to obstacles. These tissue characteristics can be defined within particular spatial regions, enabling the modeler to account for regional differences, due either to intrinsic organization, particularly gray vs. white matter, or to pathology such as edema. We illustrate simulation development using spreading depression, a pathological phenomenon thought to play roles in migraine, epilepsy and stroke.

Re-display model names without descriptions