Models that contain the Current : I Sodium

Re-display model names without descriptions
    Models   Description
1. 3D model of the olfactory bulb (Migliore et al. 2014)
This entry contains a link to a full HD version of movie 1 and the NEURON code of the paper: "Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb" by M Migliore, F Cavarretta, ML Hines, and GM Shepherd.
2. 3D olfactory bulb: operators (Migliore et al, 2015)
"... Using a 3D model of mitral and granule cell interactions supported by experimental findings, combined with a matrix-based representation of glomerular operations, we identify the mechanisms for forming one or more glomerular units in response to a given odor, how and to what extent the glomerular units interfere or interact with each other during learning, their computational role within the olfactory bulb microcircuit, and how their actions can be formalized into a theoretical framework in which the olfactory bulb can be considered to contain "odor operators" unique to each individual. ..."
3. A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
1000 Cell Lateral Amygdala model for investigation of plasticity and memory storage during Pavlovian Conditioning.
4. A detailed Purkinje cell model (Masoli et al 2015)
The Purkinje cell is one of the most complex type of neuron in the central nervous system and is well known for its massive dendritic tree. The initiation of the action potential was theorized to be due to the high calcium channels presence in the dendritic tree but, in the last years, this idea was revised. In fact, the Axon Initial Segment, the first section of the axon was seen to be critical for the spontaneous generation of action potentials. The model reproduces the behaviours linked to the presence of this fundamental sections and the interplay with the other parts of the neuron.
5. A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004)
The Hund-Rudy dynamic (HRd) model is based on data from the canine epicardial ventricular myocyte. Rate-dependent phenomena associated with ion channel kinetics, action potential properties and Ca2+ handling are simulated by the model. See paper for more and details.
6. A Fast Rhythmic Bursting Cell: in vivo cell modeling (Lee 2007)
One of the cellular mechanisms underlying the generation of gamma oscillations is a type of cortical pyramidal neuron named fast rhythmic bursting (FRB) cells. After cells from cats' primary visual cortices were filled with Neurobiotin, the brains were cut, and the cells were photographed. One FRB cell was chosen to be confocaled, reconstructed with Neurolucida software, and generated a detailed multi-compartmental model in the NEURON program. We explore firing properties of FRB cells and the role of enhanced Na+ conductance.
7. A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
“… Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. … The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i) the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii) the statistics of the corticothalamic synaptic bombardment and iii) the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. …”
8. A model for interaural time difference sensitivity in the medial superior olive (Zhou et al 2005)
This model simulates responses of neurons to interaural time difference (ITD) in the medial superior olive (MSO) of the mammalian brainstem. The model has a bipolar cell structure and incorporates two anatomic observations in the MSO: (1) the axon arises from the dendrite that receives ipsilateral inputs and (2) inhibitory synapses are located primarily on the soma in adult animals. Fine adjustment of the best ITD is achieved by the interplay of somatic sodium currents and synaptic inhibitory currents. The model suggests a mechanism for dynamically "fine-tuning" the ITD sensitivity of MSO cells by the opponency between depolarizing sodium currents and hyperpolarizing inhibitory currents.
9. A model for recurrent spreading depolarizations (Conte et al. 2017)
A detailed biophysical model for a neuron/astrocyte network is developed in order to explore mechanisms responsible for cortical spreading depolarizations. This includes a model for the Na+-glutamate transporter, which allows for a detailed description of reverse glutamate uptake. In particular, we consider the specific roles of elevated extracellular glutamate and K+ in the initiation, propagation and recurrence of spreading depolarizations.
10. A Model of Multiple Spike Initiation Zones in the Leech C-interneuron (Crisp 2009)
The leech C-interneuron and its electrical synapse with the S-interneuron exhibit unusual properties: an asymmetric delay when impulses travel from one soma to the other, and graded C-interneuron impulse amplitudes under elevated divalent cation concentrations. These properties have been simulated using a SNNAP model in which the C-interneuron has multiple, independent spike initiation zones associated with individual electrical junctions with the C-interneuron.
11. A model of slow motor unit (Kim, 2017)
Cav1.3 channels in motoneuron dendrites are actively involved during normal motor activities. To investigate the effects of the activation of motoneuron Cav1.3 channels on force production, a model motor unit was built based on best-available data. The simulation results suggest that force potentiation induced by Cav1.3 channel activation is strongly modulated not only by firing history of the motoneuron but also by length variation of the muscle as well as neuromodulation inputs from the brainstem.
12. A model of the T-junction of a C-fiber sensory neuron (Sundt et al. 2015)
The effect of geometry and ionic mechanisms on spike propagation through the T-junction of an unmyelinated sensory neuron.
13. A Moth MGC Model-A HH network with quantitative rate reduction (Buckley & Nowotny 2011)
We provide the model used in Buckley & Nowotny (2011). It consists of a network of Hodgkin Huxley neurons coupled by slow GABA_B synapses which is run alongside a quantitative reduction described in the associated paper.
14. A multi-compartment model for interneurons in the dLGN (Halnes et al. 2011)
This model for dLGN interneurons is presented in two parameterizations (P1 & P2), which were fitted to current-clamp data from two different interneurons (IN1 & IN2). The model qualitatively reproduces the responses in IN1 & IN2 under 8 different experimental condition, and quantitatively reproduces the I/O-relations (#spikes elicited as a function of injected current).
15. A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
A realistic neural network was used to simulate a region of neocortex to obtain extracellular LFPs from ‘virtual micro-electrodes’ and produce test data for comparison with multisite microelectrode recordings. A model was implemented in the GENESIS neurosimulator. A simulated region of cortex was represented by layers 2/3, 5/6 (interneurons and pyramidal cells) and layer 4 stelate cells, spaced at 25 µm in each horizontal direction. Pyramidal cells received AMPA and NMDA inputs from neighboring cells at the basal and apical dendrites. The LFP data was generated by simulating 16-site electrode array with the help of ‘efield’ objects arranged at the predetermined positions with respect to the surface of the simulated network. The LFP for the model is derived from a weighted average of the current sources summed over all cellular compartments. Cell models were taken from from Traub et al. (2005) J Neurophysiol 93(4):2194-232.
16. A multiphysics neuron model for cellular volume dynamics (Lee et al. 2011)
This paper introduces a novel neuron model, where the cell volume is a time-varying variable and multiple physical principles are combined to build governing equations. Using this model, we analyzed neuronal volume responses during excitation, which elucidated the waveforms of fast intrinsic optical signals observed experimentally across the literature. In addition, we analyzed volume responses on a longer time scale with repetitive stimulation to study the characteristics of slow cell swelling.
17. A network model of tail withdrawal in Aplysia (White et al 1993)
The contributions of monosynaptic and polysynaptic circuitry to the tail-withdrawal reflex in the marine mollusk Aplysia californica were assessed by the use of physiologically based neural network models. Effects of monosynaptic circuitry were examined by the use of a two-layer network model with four sensory neurons in the input layer and one motor neuron in the output layer. Results of these simulations indicated that the monosynaptic circuit could not account fully for long-duration responses of tail motor neurons elicited by tail stimulation. A three-layer network model was constructed by interposing a layer of two excitatory interneurons between the input and output layers of the two-layer network model. The three-layer model could account for long-duration responses in motor neurons. Sensory neurons are a known site of plasticity in Aplysia. Synaptic plasticity at more than one locus modified dramatically the input-output relationship of the three-layer network model. This feature gave the model redundancy in its plastic properties and points to the possibility of distributed memory in the circuitry mediating withdrawal reflexes in Aplysia. Please see paper for more results and details.
18. A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
Infra-slow rhythmic neuronal activity with very long (> 10 s) period duration was described in many brain areas but little is known about the role of this activity and the mechanisms that produce it. Here we combine experimental and computational methods to show that synchronous infra-slow bursting activity in mitral cells of the mouse accessory olfactory bulb (AOB) emerges from interplay between intracellular dynamics and network connectivity. In this novel mechanism, slow intracellular Na+ dynamics endow AOB mitral cells with a weak tendency to burst, which is further enhanced and stabilized by chemical and electrical synapses between them. Combined with the unique topology of the AOB network, infra-slow bursting enables integration and binding of multiple chemosensory stimuli over prolonged time scale. The example protocol simulates a two-glomeruli network with a single shared cell. Although each glomerulus is stimulated at a different time point, the activity of the entire population becomes synchronous (see paper Fig. 8)
19. A Neuronal Circuit Simulator for non Monte Carlo Analysis of Neuronal Noise (Kilinc et al)
cirsiumNeuron is a neuronal circuit simulator that can directly and efficiently compute characterizations of stochastic behavior, i.e., noise, for multi-neuron circuits. In cirsiumNeuron, we utilize a general modeling framework for biological neuronal circuits which systematically captures the nonstationary stochastic behavior of the ion channels and the synaptic processes. In this framework, we employ fine-grained, discrete-state, continuous-time Markov Chain (MC) models of both ion channels and synaptic processes in a unified manner. Our modeling framework can automatically generate the corresponding coarse-grained, continuous-state, continuous-time Stochastic Differential Equation (SDE) models. In addition, for the stochastic characterization of neuronal variability and noise, we have implemented semi-analytical, non Monte Carlo analysis techniques that work both in time and frequency domains, which were previously developed for analog electronic circuits. In these semi-analytical noise evaluation schemes, (differential) equations that directly govern probabilistic characterizations in the form of correlation functions (time domain) or spectral densities (frequency domain) are first derived analytically, and then solved numerically. These semi-analytical noise analysis techniques correctly and accurately capture the second order statistics (mean, variance, autocorrelation, and power spectral density) of the underlying neuronal processes as compared with Monte Carlo simulations.
20. A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012)
These are the NEURON files for 10 different models of a reduced L5 pyramidal neuron. The parameters were obtained by automatically fitting the models to experimental data using a multi objective evolutionary search strategy. Details on the algorithm can be found at <a href="http://www.g-node.org/emoo">www.g-node.org/emoo</a> and in Bahl et al. (2012).
21. A simplified cerebellar Purkinje neuron (the PPR model) (Brown et al. 2011)
These models were implemented in NEURON by Sherry-Ann Brown in the laboratory of Leslie M. Loew. The files reproduce Figures 2c-f from Brown et al, 2011 "Virtual NEURON: a Strategy For Merged Biochemical and Electrophysiological Modeling".
22. A simulation method for the firing sequences of motor units (Jiang et al 2006)
" ... a novel model based on the Hodgkin–Huxley (HH) system is proposed, which has the ability to simulate the complex neurodynamics of the firing sequences of motor neurons. The model is presented at the cellular level and network level, and some simulation results from a simple 3-neuron network are presented to demonstrate its applications." See paper for more and details.
23. A single column thalamocortical network model (Traub et al 2005)
To better understand population phenomena in thalamocortical neuronal ensembles, we have constructed a preliminary network model with 3,560 multicompartment neurons (containing soma, branching dendrites, and a portion of axon). Types of neurons included superficial pyramids (with regular spiking [RS] and fast rhythmic bursting [FRB] firing behaviors); RS spiny stellates; fast spiking (FS) interneurons, with basket-type and axoaxonic types of connectivity, and located in superficial and deep cortical layers; low threshold spiking (LTS) interneurons, that contacted principal cell dendrites; deep pyramids, that could have RS or intrinsic bursting (IB) firing behaviors, and endowed either with non-tufted apical dendrites or with long tufted apical dendrites; thalamocortical relay (TCR) cells; and nucleus reticularis (nRT) cells. To the extent possible, both electrophysiology and synaptic connectivity were based on published data, although many arbitrary choices were necessary.
24. A single kinetic model for all human voltage-gated sodium channels (Balbi et al, 2017)
Code for simulating macroscopic currents of sodium channels (Nav1.1. to Nav1.9), by means of a single kinetic model. Intensity-voltage curves, normalized conductance-voltage relationship, steady-state availability and recovery from inactivation are simulated.
25. A threshold equation for action potential initiation (Platkiewicz & Brette 2010)
"We examined in models the influence of Na channel activation, inactivation, slow voltage-gated channels and synaptic conductances on spike threshold. We propose a threshold equation which quantifies the contribution of all these mechanisms. It provides an instantaneous time-varying value of the threshold, which applies to neurons with fluctuating inputs. ... We find that spike threshold depends logarithmically on Na channel density, and that Na channel inactivation and K channels can dynamically modulate it in an adaptive way: the threshold increases with membrane potential and after every action potential. " See paper for more.
26. A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
This is a two-layer biophysical olfactory bulb (OB) network model to study cholinergic neuromodulation. Simulations show that nicotinic receptor activation sharpens mitral cell receptive field, while muscarinic receptor activation enhances network synchrony and gamma oscillations. This general model suggests that the roles of nicotinic and muscarinic receptors in OB are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
27. A two-stage model of dendritic integration in CA1 pyramidal neurons (Katz et al. 2009)
"... In a two-stage integration model, inputs contribute directly to dendritic spikes, and outputs from multiple branches sum in the axon. ... We used serial-section electron microscopy to reconstruct individual apical oblique dendritic branches of CA1 pyramidal neurons and observe a synapse distribution consistent with the two-stage integration model. Computational modeling suggests that the observed synapse distribution enhances the contribution of each dendritic branch to neuronal output."
28. A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
We present a unified model of the thalamus that is capable of independently generating multiple distinct oscillations (delta, spindle, alpha and gamma oscillations) under different levels of acetylcholine (ACh) and norepinephrine (NE) modulation corresponding to different physiological conditions (deep sleep, light sleep, relaxed wakefulness and attention). The model also shows that entrainment of thalamic oscillations is state-dependent.
29. Accurate and fast simulation of channel noise in conductance-based model neurons (Linaro et al 2011)
We introduce and operatively present a general method to simulate channel noise in conductance-based model neurons, with modest computational overheads. Our approach may be considered as an accurate generalization of previous proposal methods, to the case of voltage-, ion-, and ligand-gated channels with arbitrary complexity. We focus on the discrete Markov process descriptions, routinely employed in experimental identification of voltage-gated channels and synaptic receptors.
30. Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009)
"...Previous computational studies have yielded conflicting conclusions about the role of Na+ channel density and biophysical properties in action potential initiation as a result of inconsistent estimates of channel density. Our modeling studies integrated the immunostaining and electrophysiological results and showed that the lowest threshold for action potential initiation at the distal AIS was largely determined by the density of low-threshold Nav1.6 channels ... Distinct from the function of Nav1.6 channel, the Nav1.2 channel may control action potential backpropagation because of its high density at the proximal AIS and high threshold. ... In conclusion, distal AIS accumulation of Nav1.6 channels determines the low threshold for action potential initiation; whereas proximal AIS accumulation of Nav1.2 channels sets the threshold for the generation of somatodendritic potentials and ensures action potential backpropagation to the soma and dendrites. Thus, Nav1.6 and Nav1.2 channels serve distinct functions in action potential initiation and backpropagation."
31. Action potential initiation in the olfactory mitral cell (Shen et al 1999)
Mitral cell model with standard parameters for the paper: Shen, G.Y., Chen, W. R., Midtgaard, J., Shepherd, G.M., and Hines, M.L. (1999) Computational Analysis of Action Potential Initiation in Mitral Cell Soma and Dendrites Based on Dual Patch Recordings. Journal of Neurophysiology 82:3006. Contact Michael.Hines@yale.edu if you have any questions about the implementation of the model.
32. Action potential of striated muscle fiber (Adrian et al 1970)
1. Membrane currents during step depolarizations were determined by a method in which three electrodes were inserted near the end of a fibre in the frog's sartorius muscle. The theoretical basis and limitations of the method are discussed. 2. Measurements of the membrane capacity (CM) and resting resistance (RM) derived from the current during a step change in membrane potential are consistent with values found by other methods. 3. In fibres made mechanically inactive with hypertonic solutions (Ringer solution plus 350 mM sucrose) step depolarizations produced ionic currents which resembled those of nerve in showing (a) an early transient inward current, abolished by tetrodotoxin, which reversed when the depolarization was carried beyond an internal potential of about +20 mV, (b) a delayed outward current, with a linear instantaneous current¡Xvoltage relation, and a mean equilibrium potential with a normal potassium concentration (2¡P5 mM) of -85 mV. 4. The reversal potential for the early current appears to be consistent with the sodium equilibrium potential expected in hypertonic solutions. 5. The variation of the equilibrium potential for the delayed current (V¡¬K) with external potassium concentration suggests that the channel for delayed current has a ratio of potassium to sodium permeability of 30:1; this is less than the resting membrane where the ratio appears to be 100:1. V¡¬K corresponds well with the membrane potential at the beginning of the negative after-potential observed under similar conditions. 6. The variation of V¡¬K with the amount of current which has passed through the delayed channel suggests that potassium ions accumulate in a space of between 1/3 and 1/6 of the fibre volume. If potassium accumulates in the transverse tubular system (T system) much greater variation in V¡¬K would be expected. 7. The delayed current is not maintained but is inactivated like the early current. The inactivation is approximately exponential with a time constant of 0¡P5 to 1 sec at 20¢X C. The steady-state inactivation of the potassium current is similar to that for the sodium current, but its voltage dependence is less steep and the potential for half inactivation is 20 mV rate more positive. 8. Reconstructions of ionic currents were made in terms of the parameters (m, n, h) of the Hodgkin¡XHuxley model for the squid axon, using constants which showed a similar dependence on voltage. 9. Propagated action potentials and conduction velocities were computed for various conditions on the assumption that the T system behaves as if it were a series resistance and capacity in parallel with surface capacity and the channels for sodium, potassium and leak current. There was reasonable agreement with observed values, the main difference being that the calculated velocities and rates of rise were somewhat less than those observed experimentally.
33. Action potential reconstitution from measured current waveforms (Alle et al. 2009)
This NEURON code reconstitutes action potentials in a model of a hippocampal mossy fiber from experimentally measured sodium, potassium and calcium current waveforms as described in Alle et al. (2009).
34. Action potential-evoked Na+ influx are similar in axon and soma (Fleidervish et al. 2010)
"In cortical pyramidal neurons, the axon initial segment (AIS) is pivotal in synaptic integration. It has been asserted that this is because there is a high density of Na+ channels in the AIS. However, we found that action potential-associated Na+ flux, as measured by high-speed fluorescence Na+ imaging, was about threefold larger in the rat AIS than in the soma. Spike-evoked Na+ flux in the AIS and the first node of Ranvier was similar and was eightfold lower in basal dendrites. ... In computer simulations, these data were consistent with the known features of action potential generation in these neurons."
35. Actions of Rotenone on ionic currents and MEPPs in Mouse Hippocampal Neurons (Huang et al 2018)
" ... With the aid of patch-clamp technology and simulation modeling, the effects of (Rotenone) Rot on membrane ion currents present in mHippoE-14 cells were investigated. Results: Addition of Rot produced an inhibitory action on the peak amplitude of INa ...; however, neither activation nor inactivation kinetics of INa was changed during cell exposure to this compound. Addition of Rot produced little or no modifications in the steady-state inactivation curve of INa. Rot increased the amplitude of Ca2+-activated Cl- current in response to membrane depolarization ... . Moreover, when these cells were exposed to 10 µM Rot, a specific population of ATP-sensitive K+ channels ... was measured, despite its inability to alter single-channel conductance. Under current clamp condition, the frequency of miniature end-plate potentials in mHippoE-14 cells was significantly raised in the presence of Rot (10 µM) with no changes in their amplitude and time course of rise and decay. In simulated model of hippocampal neurons incorporated with chemical autaptic connection, increased autaptic strength to mimic the action of Rot was noted to change the bursting pattern with emergence of subthreshold potentials. Conclusions: The Rot effects presented herein might exert a significant action on functional activities of hippocampal neurons occurring in vivo. "
36. Active dendrites and spike propagation in a hippocampal interneuron (Saraga et al 2003)
We create multi-compartment models of an Oriens-Lacunosum/Moleculare (O-LM) hippocampal interneuron using passive properties, channel kinetics, densities and distributions specific to this cell type, and explore its signaling characteristics. We find that spike initiation depends on both location and amount of input, as well as the intrinsic properties of the interneuron. Distal synaptic input always produces strong back-propagating spikes whereas proximal input could produce both forward and back-propagating spikes depending on the input strength. Please see paper for more details.
37. Active dendritic action potential propagation (Casale & McCormick 2011)
This model explores the dendritic sodium and potassium conductances needed to recapitulate voltage-sensitive dye optical recordings of thalamic interneuron dendrites in the dorsal lateral geniculate nucleus. Model ion channels were selected based on pharmacological data.
38. Active dendritic integration in robust and precise grid cell firing (Schmidt-Hieber et al 2017)
"... Whether active dendrites contribute to the generation of the dual temporal and rate codes characteristic of grid cell output is unknown. We show that dendrites of medial entorhinal cortex neurons are highly excitable and exhibit a supralinear input–output function in vitro, while in vivo recordings reveal membrane potential signatures consistent with recruitment of active dendritic conductances. By incorporating these nonlinear dynamics into grid cell models, we show that they can sharpen the precision of the temporal code and enhance the robustness of the rate code, thereby supporting a stable, accurate representation of space under varying environmental conditions. Our results suggest that active dendrites may therefore constitute a key cellular mechanism for ensuring reliable spatial navigation."
39. Activity dependent changes in dendritic spine density and spine structure (Crook et al. 2007)
"... In this work, we extend previous modeling studies [27] by combining a model for activity-dependent spine density with one for calcium-mediated spine stem restructuring. ... Additional equations characterize the change in spine density along the dendrite, the current balance equation for an individual spine head, the change in calcium concentration in the spine head, and the dynamics of spine stem resistance. We use computational studies to investigate the changes in spine density and structure for differing synaptic inputs and demonstrate the effects of these changes on the input-output properties of the dendritic branch. ... "
40. Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002)
These two papers review various experimental papers and examine the effects of activity on motoneurons in a similar 5 compartment model with 10 active conductances. Included are slow (S) and fast (F) type and fast fatigue resistant (FR) and fast fatigable (FF) models corresponding to the types of motoneurons. See papers for more and details.
41. Activity dependent conductances in a neuron model (Liu et al. 1998)
"... We present a model of a stomatogastric ganglion (STG) neuron in which several Ca2+-dependent pathways are used to regulate the maximal conductances of membrane currents in an activity-dependent manner. Unlike previous models of this type, the regulation and modification of maximal conductances by electrical activity is unconstrained. The model has seven voltage-dependent membrane currents and uses three Ca2+ sensors acting on different time scales. ... The model suggests that neurons may regulate their conductances to maintain fixed patterns of electrical activity, rather than fixed maximal conductances, and that the regulation process requires feedback systems capable of reacting to changes of electrical activity on a number of different time scales."
42. Activity patterns in a subthalamopallidal network of the basal ganglia model (Terman et al 2002)
"Based on recent experimental data, we have developed a conductance-based computational network model of the subthalamic nucleus and the external segment of the globus pallidus in the indirect pathway of the basal ganglia. Computer simulations and analysis of this model illuminate the roles of the coupling architecture of the network, and associated synaptic conductances, in modulating the activity patterns displayed by this network. Depending on the relationships of these coupling parameters, the network can support three general classes of sustained firing patterns: clustering, propagating waves, and repetitive spiking that may show little regularity or correlation. ...". Terman's XPP code and a partial implementation by Taylor Malone in NEURON and python are included.
43. Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
"We describe a computational model of the principal cell in the nucleus accumbens (NAcb), the medium spiny projection (MSP) neuron. The model neuron, constructed in NEURON, includes all of the known ionic currents in these cells and receives synaptic input from simulated spike trains via NMDA, AMPA, and GABAA receptors. ... results suggest that afferent information integration by the NAcb MSP cell may be compromised by pathology in which the NMDA current is altered or modulated, as has been proposed in both schizophrenia and addiction."
44. Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
" ... we employ a novel reduction algorithm to produce a 2 compartment model of the cerebellar Purkinje neuron from a previously published, 1089 compartment model. It runs more than 400 times faster and retains the electrical behavior of the full model. So, it is more suitable for inclusion in large network models, where computational power is a limiting issue. We show the utility of this reduced model by demonstrating that it can replicate the full model’s response to alcohol, which can in turn reproduce experimental recordings from Purkinje neurons following alcohol application. ..."
45. Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
This is an Allen Cell Types Database model of a Gad2-IRES-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
46. Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
This is an Allen Cell Types Database model of a Gad2-IRES-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
47. Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
This is an Allen Cell Types Database model of a Htr3a-Cre neuron from layer 2/3 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
48. Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
This is an Allen Cell Types Database model of a Htr3a-Cre neuron from layer 2/3 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
49. Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 2/3 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
50. Allen Institute: Nr5a1-Cre VISp layer 4 329322394
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
51. Allen Institute: Nr5a1-Cre VISp layer 4 472306544
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
52. Allen Institute: Nr5a1-Cre VISp layer 4 472442377
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
53. Allen Institute: Nr5a1-Cre VISp layer 4 472451419
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
54. Allen Institute: Nr5a1-Cre VISp layer 4 472915634
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
55. Allen Institute: Nr5a1-Cre VISp layer 4 473834758
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
56. Allen Institute: Nr5a1-Cre VISp layer 4 473863035
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
57. Allen Institute: Nr5a1-Cre VISp layer 4 473871429
This is an Allen Cell Types Database model of a Nr5a1-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
58. Allen Institute: Ntsr1-Cre VISp layer 4 472430904
This is an Allen Cell Types Database model of a Ntsr1-Cre neuron from layer 6a of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
59. Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
This is an Allen Cell Types Database model of a Pvalb-IRES-Cre neuron from layer 2/3 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
60. Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
This is an Allen Cell Types Database model of a Pvalb-IRES-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
61. Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
This is an Allen Cell Types Database model of a Pvalb-IRES-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
62. Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
This is an Allen Cell Types Database model of a Pvalb-IRES-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
63. Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
This is an Allen Cell Types Database model of a Pvalb-IRES-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
64. Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
This is an Allen Cell Types Database model of a Pvalb-IRES-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
65. Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
This is an Allen Cell Types Database model of a Pvalb-IRES-Cre neuron from layer 6a of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
66. Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
This is an Allen Cell Types Database model of a Pvalb-IRES-Cre neuron from layer 6a of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
67. Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
This is an Allen Cell Types Database model of a Pvalb-IRES-Cre neuron from layer 6a of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
68. Allen Institute: Rbp4-Cre VISp layer 5 472424854
This is an Allen Cell Types Database model of a Rbp4-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
69. Allen Institute: Rbp4-Cre VISp layer 6a 473871592
This is an Allen Cell Types Database model of a Rbp4-Cre neuron from layer 6a of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
70. Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
This is an Allen Cell Types Database model of a Rorb-IRES2-Cre-D neuron from layer 2/3 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
71. Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
This is an Allen Cell Types Database model of a Rorb-IRES2-Cre-D neuron from layer 2/3 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
72. Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
This is an Allen Cell Types Database model of a Rorb-IRES2-Cre-D neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
73. Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
This is an Allen Cell Types Database model of a Rorb-IRES2-Cre-D neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
74. Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
This is an Allen Cell Types Database model of a Rorb-IRES2-Cre-D neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
75. Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
This is an Allen Cell Types Database model of a Scnn1a-Tg2-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
76. Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
This is an Allen Cell Types Database model of a Scnn1a-Tg2-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
77. Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
This is an Allen Cell Types Database model of a Scnn1a-Tg2-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
78. Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
This is an Allen Cell Types Database model of a Scnn1a-Tg2-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
79. Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
This is an Allen Cell Types Database model of a Scnn1a-Tg2-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
80. Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
81. Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
82. Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
83. Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
84. Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
85. Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
86. Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
This is an Allen Cell Types Database model of a Scnn1a-Tg3-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
87. Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
This is an Allen Cell Types Database model of a Sst-IRES-Cre neuron from layer 2/3 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
88. Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
This is an Allen Cell Types Database model of a Sst-IRES-Cre neuron from layer 2/3 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
89. Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
This is an Allen Cell Types Database model of a Sst-IRES-Cre neuron from layer 4 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
90. Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
This is an Allen Cell Types Database model of a Sst-IRES-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
91. Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
This is an Allen Cell Types Database model of a Sst-IRES-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
92. Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
This is an Allen Cell Types Database model of a Sst-IRES-Cre neuron from layer 5 of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
93. Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
This is an Allen Cell Types Database model of a Sst-IRES-Cre neuron from layer 6a of the mouse primary visual cortex. The model was based on a traced morphology after filling the cell with biocytin and optimized using experimental electrophysiology data recorded from the same cell. The electrophysiology data was collected in a highly standardized way to facilitate comparison across all cells in the database. The model was optimized by a genetic algorithm that adjusted the densities of conductances placed at the soma to match experimentally-measured features of action potential firing. Data and models from the Allen Cell Types Database are made available to the community under the Allen Institute's Terms of Use and Citation Policy.
94. Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)
The model simulations provide evidence oblique dendrites in CA1 pyramidal neurons are susceptible to hyper-excitability by amyloid beta block of the transient K+ channel, IA. See paper for details.
95. Amyloid-beta effects on release probability and integration at CA3-CA1 synapses (Romani et al. 2013)
The role of amyloid beta (Aß) in brain function and in the pathogenesis of Alzheimer’s disease remains elusive. Recent publications reported that an increase in Aß concentration perturbs presynaptic release in hippocampal neurons, in particular by increasing release probability of CA3-CA1 synapses. The model predics how this alteration can affect synaptic plasticity and signal integration. The results suggest that the perturbation of release probability induced by increased Aß can significantly alter the spike probability of CA1 pyramidal neurons and thus contribute to abnormal hippocampal function during Alzheimer’s disease.
96. An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008)
"... We developed a detailed biophysical model of STDP and found that the model required spike timing-dependent distinct suppression of NMDARs by Ca2+-calmodulin. This led us to predict an allosteric kinetics of NMDARs: a slow and rapid suppression of NMDARs by Ca2+-calmodulin with prespiking -> postspiking and postspiking -> prespiking, respectively. We found that the allosteric kinetics, but not the conventional kinetics, is consistent with specific features of amplitudes and peak time of NMDAR-mediated EPSPs in experiments. ..." See paper for more and details.
97. An ion-based model for swelling of neurons and astrocytes (Hubel & Ullah 2016)
The programs describe ion dynamics and osmosis-driven cellular swelling. “code_fig3.ode” shows a scenario of permanent cessation of energy supply / Na/K-pump activity, and the induced transition from normal conditions to the Donnan equilibrium for an isolated neuron and its extracellular space. “code_Fig7.ode” shows spreading depolarization induced by an interruption of energy supply in a model consisting of a neuron, a glia cell and the extracellular space. The simulations show the evolution of ion concentrations, Nernst potentials, the membrane potential, gating variables and cellular volumes.
98. Anoxic depolarization, recovery: effect of brain regions and extracellular space (Hubel et al. 2016)
The extent of anoxic depolarization (AD), the initial electrophysiological event during ischemia, determines the degree of brain region-specific neuronal damage. Neurons in higher brain regions have stronger ADs and are more easily injured than neurons in lower brain region. The mechanism leading to such differences is not clear. We use a computational model based on a Hodgkin-Huxley framework which includes neural spiking dynamics, processes of ion accumulation, and homeostatic mechanisms like vascular coupling and Na/K-exchange pumps. We show that a large extracellular space (ECS) explains the recovery failure in high brain regions. A phase-space analysis shows that with a large ECS recovery from AD through potassium regulation is impossible. The code 'time_series.ode' can be used to simulate AD for a large and a small ECS and show the different behaviors. The code ‘continuations.ode’ can be used to show the fixed point structure. Depending on our choice of large or small ECS the fixed point curve implies the presence/absence of a recovery threshold that defines the potassium clearance demand.
99. AOB mitral cell: persistent activity without feedback (Zylbertal et al., 2015)
Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. This is a realistic conductance-based model that was constructed using the detailed morphology of a single typical accessory olfactory bulb (AOB) mitral cell for which the electrophysiological properties were characterized.
100. AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
This simple axon-soma model explained how the rapid rising phase in the somatic spike is derived from the propagated axon initiated spike, and how the somatic spike threshold variance is affected by spike propagation.
101. AP initiation and propagation in type II cochlear ganglion cell (Hossain et al 2005)
The model of type II cochlear ganglion cell was based on the immunostaining of the mouse auditory pathway. Specific antibodies were used to map the distribution of voltage-dependent sodium channels along the two unmyelinated axon-like processes of the bipolar ganglion cells. Three distinct hot spots were detected. A high density of sodium channels was present over the entire trajectory of sensory endings beneath the outer hair cells (the most distal portion of the peripheral axon). The other two hot spots were localized in the initial segments of both of the axons that flank the unmyelinated bipolar ganglion cell bodies. A biophysical model indicates that all three hot spots might play important roles in action potential initiation and propagation. For instance, the hot spot in the receptor segment is important for transforming the receptor potentials into a full blown action potential (Supplemental Fig. 1). The hot spots in the two paraganglionic axon initial segments are there to ensure the successful propagation of action potentials from the peripheral to the central axon through the cell body. The Readme.txt file provides step by step instructions on how to recreate Figures 6 and 7 of Hossain et al., 2005 paper.
102. AP shape and parameter constraints in optimization of compartment models (Weaver and Wearne 2006)
"... We construct an objective function that includes both time-aligned action potential shape error and errors in firing rate and firing regularity. We then implement a variant of simulated annealing that introduces a recentering algorithm to handle infeasible points outside the boundary constraints. We show how our objective function captures essential features of neuronal firing patterns, and why our boundary management technique is superior to previous approaches."
103. Axon-somatic back-propagation in a detailed model of cat spinal motoneuron (Balbi et al, 2015)
Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies, NeuroMorpho.org, and instantiated in neurocomputational models.
104. Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
Examines how electrical coupling between proximal axons produces fast oscillations in cerebellar Purkinje cells. Traub RD, Middleton SJ, Knopfel T, Whittington MA (2008) Model of very fast (>75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. European Journal of Neuroscience.
105. Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
"... We show that the Na+ channel NaV1.6 displays a striking aggregation at the AIS of cortical neurons. ... In combination with simulations using a realistic computer model of a CA1 pyramidal cell, our results imply that a hyperpolarized voltage-dependence of activation of AIS NaV1.6 channels is important both in determining spike threshold and localizing spike initiation to the AIS. ... These results suggest that NaV1.6 subunits at the AIS contribute significantly to its role as spike trigger zone and shape repetitive discharge properties of CA1 neurons."
106. Axonal Projection and Interneuron Types (Helmstaedter et al. 2008)
"Interneurons in layer 2/3 (L2/3) of the somatosensory cortex show 4 types of axonal projection patterns with reference to the laminae and borders of columns in rat barrel cortex (Helmstaedter et al. 2008a). Here, we analyzed the dendritic geometry and electrical excitability of these interneurons. ... We conclude that 1) dendritic polarity is correlated to intrinsic electrical excitability, and 2) the axonal projection pattern represents an independent classifier of interneurons. "
107. Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2011)
This is a model of the basal ganglia-thalamic network, modified from the Rubin and Terman model (High frequency stimulation of the Subthalamic Nucleus, Rubin and Terman 2004). We subsequently used this model to investigate the effectiveness of STN and GPi DBS as well as lesion when various proportions of local cells and fibers of passage were activated or silenced. The BG network exhibited characteristics consistent with published experimental data, both on the level of single cells and on the network level. Perhaps most notably, and in contrast to the original RT model, the changes in the thalamic error index with changes in the DBS frequency matched well the changes in clinical symptoms with changes in DBS frequency.
108. BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010)
" ... Although the BCM-like plasticity framework has been a useful formulation to understand synaptic plasticity and metaplasticity, a mechanism for the activity-dependent regulation of this modification threshold has remained an open question. In this simulation study based on CA1 pyramidal cells, we use a modification of the calcium-dependent hypothesis proposed elsewhere and show that a change in the hyperpolarization-activated, nonspecific-cation h current is capable of shifting the modification threshold. ..."
109. BDNF morphological contributions to AP enhancement (Galati et al. 2016)
" ... We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. ..."
110. Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006)
"Spike-timing dependent plasticity (STDP) is a form of associative synaptic modification which depends on the respective timing of pre- and post-synaptic spikes. The biophysical mechanisms underlying this form of plasticity are currently not known. We present here a biophysical model which captures the characteristics of STDP, such as its frequency dependency, and the effects of spike pair or spike triplet interactions. ... A simplified phenomenological model is also derived..."
111. Biophysically detailed model of the mouse sino-atrial node cell (Kharche et al. 2011)
This model is developed to study the role of various electrophysiological mechanisms in generating cardiac pacemaking action potentials (APs).The model incorporates membrane ionic currents and intracellular mechanisms contributing to spontaneous mouse SAN APs. The model was validated by testing the functional roles of individual membrane currents in one and multiple parameter analyses.The roles of intracellular Ca2+-handling mechanisms on cardiac pacemaking were also investigated in the model.
112. Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
"Variations in cortical oscillations in the alpha (7–14 Hz) and beta (15–29 Hz) range have been correlated with attention, working memory, and stimulus detection. The mu rhythm recorded with magnetoencephalography (MEG) is a prominent oscillation generated by Rolandic cortex containing alpha and beta bands. Despite its prominence, the neural mechanisms regulating mu are unknown. We characterized the ongoing MEG mu rhythm from a localized source in the finger representation of primary somatosensory (SI) cortex. Subjects showed variation in the relative expression of mu-alpha or mu-beta, which were nonoverlapping for roughly 50% of their respective durations on single trials. To delineate the origins of this rhythm, a biophysically principled computational neural model of SI was developed, with distinct laminae, inhibitory and excitatory neurons, and feedforward (FF, representative of lemniscal thalamic drive) and feedback (FB, representative of higher-order cortical drive or input from nonlemniscal thalamic nuclei) inputs defined by the laminar location of their postsynaptic effects. ..."
113. Boundary effects influence velocity in transverse propagation of cardiac APs (Sperelakis et al 2005)
... earlier experiments were carried out with 2-dimensional sheets of cells: 2 × 3, 3 × 4, and 5 × 5 models (where the first number is the number of parallel chains and the second is the number of cells in each chain). The purpose of the present study was to enlarge the model size to 7 × 7, thus enabling the transverse velocities to be compared in models of different sizes (where all circuit parameters are identical in all models). This procedure should enable the significance of the role of edge (boundary) effects in transverse propagation to be determined. See paper for more and details.
114. Breakdown of accmmodation in nerve: a possible role for INAp (Hennings et al 2005)
The present modeling study suggests that persistent, low-threshold, rapidly activating sodium currents have a key role in breakdown of accommodation, and that breakdown of accommodation can be used as a tool for studying persistent sodium current under normal and pathological conditions. See paper for more and details.
115. Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Intracellular stimulation of sensory neurons to fire a burst of action potentials at 10 Hz for 1 sec led to significant homosynaptic depression of postsynaptic responses. During the burst, the steady-state depressed phase of the postsynaptic response, which was only 20% of the initial EPSP of the burst, still contributed to firing the motor neuron. To explore the functional contribution of transient homosynaptic depression to the response of the motor neuron, computer simulations of the sensorimotor synapse with and without depression were compared. Depression allowed the motor neuron to produce graded responses over a wide range of presynaptic input strength. Thus, synaptic depression increased the dynamic range of the sensorimotor synapse and can, in principle, have a profound effect on information processing. Please see paper for results and details.
116. Bursting activity of neuron R15 in Aplysia (Canavier et al 1991, Butera et al 1995)
An equivalent circuit model of the R15 bursting neuron in Aplysia has been combined with a fluid compartment model, resulting in a model that incorporates descriptions of most of the membrane ion channels that are known to exist in the somata of R15, as well as providing a Ca2+ balance on the cell. ... (from the second paper) we have implemented proposed mechanisms for the modulation of two ionic currents (IR and ISI) that play key roles in regulating its spontaneous electrical activity. The model was sufficient to simulate a wide range of endogenous activity in the presence of various concentrations of 5-HT or DA. See papers for more and details.
117. Bursting and oscillations in RD1 Retina driven by AII Amacrine Neuron (Choi et al. 2014)
"In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. ..."
118. Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
119. CA1 oriens alveus interneurons: signaling properties (Minneci et al. 2007)
The model supports the experimental findings showing that the dynamic interaction between cells with various firing patterns could differently affect GABAergic signaling, leading to a wide range of interneuronal communication within the hippocampal network.
120. CA1 pyramidal cell: I_NaP and I_M contributions to somatic bursting (Golomb et al 2006)
To study the mechanisms of bursting, we have constructed a conductance-based, one-compartment model of CA1 pyramidal neurons. In this neuron model, reduced [Ca2+]o is simulated by negatively shifting the activation curve of the persistent Na+ current (INaP), as indicated by recent experimental results. The neuron model accounts, with different parameter sets, for the diversity of firing patterns observed experimentally in both zero and normal [Ca2+]o. Increasing INaP in the neuron model induces bursting and increases the number of spikes within a burst, but is neither necessary nor sufficient for bursting. We show, using fast-slow analysis and bifurcation theory, that the M-type K+ current (IM) allows bursting by shifting neuronal behavior between a silent and a tonically-active state, provided the kinetics of the spike generating currents are sufficiently, though not extremely, fast. We suggest that bursting in CA1 pyramidal cells can be explained by a single compartment *square bursting* mechanism with one slow variable, the activation of IM. See paper for more and details.
121. CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
Model of pyramidal CA1 cells connected by gap junctions in their axons. Cell geometry is based on anatomical reconstruction of rat CA1 cell (NeuroMorpho.Org ID: NMO_00927) with long axonal arbor. Model init_2cells.hoc shows failures of second spike propagation in a spike doublet, depending on conductance of an axonal gap junction. Model init_ring.hoc shows that spike failure result in reentrant oscillations of a spike in a loop of axons connected by gap junctions, where one gap junction is weak. The paper shows that in random networks of axons connected by gap junctions, oscillations are driven by single pacemaker loop of axons. The shortest loop, around which a spike can travel, is the most likely pacemaker. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We propose that this type of oscillations corresponds to so-called fast ripples in epileptic hippocampus.
122. CA1 pyramidal neuron (Migliore et al 1999)
Hippocampal CA1 pyramidal neuron model from the paper M.Migliore, D.A Hoffman, J.C. Magee and D. Johnston (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons, J. Comput. Neurosci. 7, 5-15. Instructions are provided in the below README file.Contact michele.migliore@pa.ibf.cnr.it if you have any questions about the implementation of the model.
123. CA1 pyramidal neuron synaptic integration (Bloss et al. 2016)
"... We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branchselective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation."
124. CA1 pyramidal neuron synaptic integration (Li and Ascoli 2006, 2008)
The model shows how different input patterns (irregular & asynchronous, irregular & synchronous, regular & asynchronous, regular & synchronous) affect the neuron's output rate when 1000 synapses are distributed in the proximal apical dendritic tree of a hippocampus CA1 pyramidal neuron.
125. CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)
A model of a CA1 pyramidal neuron containing a biophysically realistic morphology and 15 distributed voltage and Ca2+-dependent conductances. Repetitive firing is modulated by maximal conductance and the voltage dependence of the persistent Na+ current (INaP).
126. CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
We developed a CA1 pyramidal cell model calibrated with a broad spectrum of in vitro data. Using simultaneous dendritic and somatic recordings, and combining results for two different response measures (peak vs. mean EPSP), two different stimulus formats (single shock vs. 50 Hz trains), and two different spatial integration conditions (within vs. between-branch summation), we found the cell's subthreshold responses to paired inputs are best described as a sum of nonlinear subunit responses, where the subunits correspond to different dendritic branches. In addition to suggesting a new type of experiment and providing testable predictions, our model shows how conclusions regarding synaptic arithmetic can be influenced by an array of seemingly innocuous experimental design choices.
127. CA1 pyramidal neuron: calculation of MRI signals (Cassara et al. 2008)
NEURON mod files from the paper: Cassarà AM, Hagberg GE, Bianciardi M, Migliore M, Maraviglia B. Realistic simulations of neuronal activity: A contribution to the debate on direct detection of neuronal currents by MRI. Neuroimage. 39:87-106 (2008). In this paper, we use a detailed calculation of the magnetic field produced by the neuronal currents propagating over a hippocampal CA1 pyramidal neuron placed inside a cubic MR voxel of length 1.2 mm to estimate the Magnetic Resonance signal.
128. CA1 pyramidal neuron: conditional boosting of dendritic APs (Watanabe et al 2002)
Model files from the paper Watanabe S, Hoffman DA, Migliore M, Johnston D (2002). The experimental and modeling results support the hypothesis that dendritic K-A channels and the boosting of back-propagating action potentials contribute to the induction of LTP in CA1 neurons. See the paper for details. Questions about the model may be addressed to Michele Migliore: michele.migliore@pa.ibf.cnr.it
129. CA1 pyramidal neuron: dendritic Ca2+ inhibition (Muellner et al. 2015)
In our experimental study, we combined paired patch-clamp recordings and two-photon Ca2+ imaging to quantify inhibition exerted by individual GABAergic contacts on hippocampal pyramidal cell dendrites. We observed that Ca2+ transients from back-propagating action potentials were significantly reduced during simultaneous activation of individual nearby GABAergic synapses. To simulate dendritic Ca2+ inhibition by individual GABAergic synapses, we employed a multi-compartmental CA1 pyramidal cell model with detailed morphology, voltage-gated channel distributions, and calcium dynamics, based with modifications on the model of Poirazi et al., 2003, modelDB accession # 20212.
130. CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
This model simulates the effects of dendritic sodium spikes initiated in distal apical dendrites on the voltage and the calcium dynamics revealed by calcium imaging. It shows that dendritic sodium spike promotes large and transient calcium influxes via NMDA receptor and L-type voltage-gated calcium channels, which contribute to the induction of LTP at distal synapses.
131. CA1 pyramidal neuron: dendritic spike initiation (Gasparini et al 2004)
NEURON mod files from the paper: Sonia Gasparini, Michele Migliore, and Jeffrey C. Magee On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons, J. Neurosci., J. Neurosci. 24:11046-11056 (2004).
132. CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)
NEURON files from the paper: On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons by D.Bianchi, A. Marasco, A.Limongiello, C.Marchetti, H.Marie,B.Tirozzi, M.Migliore (2012). J Comput. Neurosci. In press. DOI: 10.1007/s10827-012-0383-y. Experimental findings shown that under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. We analyze the spiking dynamics of CA1 pyramidal neuron models using the same set of ionic currents on both an accurate morphological reconstruction and on its reduction to a single-compartment. The results show the specic ion channel properties and kinetics that are needed to reproduce the experimental findings, and how their interplay can drastically modulate the neuronal dynamics and the input current range leading to depolarization block.
133. CA1 pyramidal neuron: effects of Ih on distal inputs (Migliore et al 2004)
NEURON mod files from the paper: M. Migliore, L. Messineo, M. Ferrante Dendritic Ih selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons, J.Comput. Neurosci. 16:5-13 (2004). The model demonstrates how the dendritic Ih in pyramidal neurons could selectively suppress AP generation for a volley of excitatory afferents when they are asynchronously and distally activated.
134. CA1 pyramidal neuron: effects of Lamotrigine on dendritic excitability (Poolos et al 2002)
NEURON mod files from N. Poolos, M. Migliore, and D. Johnston, Nature Neuroscience (2002). The experimental and modeling results in this paper demonstrate for the first time that neuronal excitability can be altered by pharmaceuticals acting selectively on dendrites, and suggest an important role for Ih in controlling dendritic excitability and epileptogenesis.
135. CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
NEURON mod files from the paper: Miceli et al, Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits, PNAS 2013 Feb 25. [Epub ahead of print] In this paper, functional studies revealed that in homomeric or heteromeric configuration with KV7.2 and/or KV7.3 subunits, R213W and R213Q mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. Modeling these channels in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation.
136. CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008)
The model used in this paper confirmed the experimental findings suggesting that axonal Kv7 channels are critically and uniquely required for determining the inherent spontaneous firing of hippocampal CA1 pyramids, independently of alterations in synaptic activity. The model predicts that the axonal Kv7 density could be 3-5 times that at the soma.
137. CA1 pyramidal neuron: Ih current (Migliore et al. 2012)
NEURON files from the paper: Migliore M, Migliore R (2012) Know Your Current Ih: Interaction with a Shunting Current Explains the Puzzling Effects of Its Pharmacological or Pathological Modulations. PLoS ONE 7(5): e36867. doi:10.1371/journal.pone.0036867. Experimental findings on the effects of Ih current modulation, which is particularly involved in epilepsy, appear to be inconsistent. In the paper, using a realistic model we show how and why a shunting current, such as that carried by TASK-like channels, dependent on the Ih peak conductance is able to explain virtually all experimental findings on Ih up- or down-regulation by modulators or pathological conditions.
138. CA1 pyramidal neuron: integration of subthreshold inputs from PP and SC (Migliore 2003)
The model shows how the experimentally observed increase in the dendritic density of Ih and IA could have a major role in constraining the temporal integration window for the main CA1 synaptic inputs.
139. CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
This paper shows that persistent sodium current critically contributes to the subthreshold nonlinear dynamics of CA1 pyramidal neurons and promotes rapidly reversible conversion between place-cell and silent-cell in the hippocampus. A simple model built with realistic axo-somatic voltage-gated sodium channels in CA1 (Carter et al., 2012; Neuron 75, 1081–1093) demonstrates that the biophysics of persistent sodium current is sufficient to explain the synaptic amplification effects. A full model built previously (Grienberger et al., 2017; Nature Neuroscience, 20(3): 417–426) with detailed morphology, ion channel types and biophysical properties of CA1 place cells naturally reproduces the steep voltage dependence of synaptic responses.
140. CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
The model demonstrates that CA1 pyramidal neurons support rebound spikes mediated by hyperpolarization-activated inward current (Ih), and normally masked by A-type potassium channels (KA). Partial KA reduction confined to one or few branches of the apical tuft may be sufficient to elicit a local spike following a train of synaptic inhibition. These data suggest that the plastic regulation of KA can provide a dynamic switch to unmask post-inhibitory spiking in CA1 pyramidal neurons, further increasing the signal processing power of the CA1 synaptic microcircuitry.
141. Ca1 pyramidal neuron: reduction model (Marasco et al. 2012)
"... Here we introduce a new, automatic and fast method to map realistic neurons into equivalent reduced models running up to >40 times faster while maintaining a very high accuracy of the membrane potential dynamics during synaptic inputs, and a direct link with experimental observables. The mapping of arbitrary sets of synaptic inputs, without additional fine tuning, would also allow the convenient and efficient implementation of a new generation of large-scale simulations of brain regions reproducing the biological variability observed in real neurons, with unprecedented advances to understand higher brain functions."
142. CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)
NEURON files from the paper: A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior. by M. Migliore, I. De Blasi, D. Tegolo, R. Migliore, Neural Networks,(2011), doi:10.1016/j.neunet.2011.01.001. Starting from the experimentally supported assumption on hippocampal neurons we explore an experimentally testable prediction at the single neuron level. The model shows how and to what extent a pathological hypofunction of a contextdependent distal input on a CA1 neuron can generate hallucinations by altering the normal recall of objects on which the neuron has been previously tuned. The results suggest that a change in the context during the recall phase may cause an occasional but very significant change in the set of active dendrites used for features recognition, leading to a distorted perception of objects.
143. CA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005)
NEURON mod files from the paper: M. Migliore, M. Ferrante, GA Ascoli (2005). The model shows how the back- and forward propagation of action potentials in the oblique dendrites of CA1 neurons could be modulated by local properties such as morphology or active conductances.
144. CA1 Pyramidal Neuron: slow Na+ inactivation (Migliore 1996)
Model files from the paper: M. Migliore, Modeling the attenuation and failure of action potentials in the dendrites of hippocampal neurons, Biophys. J. 71:2394-403 (1996). Please see the below readme file for installation and use instructions. Contact michele.migliore@pa.ibf.cnr.it if you have any questions about the implementation of the model.
145. CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)
This is an adaptation of Poirazi et al.'s (2003) CA1 model that is used to measure BAP-induced voltage and calcium signals in spines after simulated Schaffer collateral synapse stimulation. In the model, the peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. There are also simulations demonstrating that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value.
146. CA1 pyramidal neurons: binding properties and the magical number 7 (Migliore et al. 2008)
NEURON files from the paper: Single neuron binding properties and the magical number 7, by M. Migliore, G. Novara, D. Tegolo, Hippocampus, in press (2008). In an extensive series of simulations with realistic morphologies and active properties, we demonstrate how n radial (oblique) dendrites of these neurons may be used to bind n inputs to generate an output signal. The results suggest a possible neural code as the most effective n-ple of dendrites that can be used for short-term memory recollection of persons, objects, or places. Our analysis predicts a straightforward physiological explanation for the observed puzzling limit of about 7 short-term memory items that can be stored by humans.
147. CA1 pyramidal neurons: effect of external electric field from power lines (Cavarretta et al. 2014)
The paper discusses the effects induced by an electric field at power lines frequency.
148. CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
NEURON mod files from the paper: Miceli et al, Neutralization of a unique, negatively-charged residue in the voltage sensor of K(V)7.2 subunits in a sporadic case of benign familial neonatal seizures, Neurobiol Dis., in press (2009). In this paper, the model revealed that the gating changes introduced by a mutation in K(v)7.2 genes encoding for the neuronal KM current in a case of benign familial neonatal seizures, increased cell firing frequency, thereby triggering the neuronal hyperexcitability which underlies the observed neonatal epileptic condition.
149. CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012)
The model predicts possible therapeutic treatments of Alzheimers's Disease in terms of pharmacological manipulations of channels' kinetic and activation properties. The results suggest how and which mechanism can be targeted by a drug to restore the original firing conditions. The simulations reproduce somatic membrane potential in control conditions, when 90% of membrane is affected by AD (Fig.4A of the paper), and after treatment (Fig.4B of the paper).
150. CA1 pyramidal neurons: effects of Kv7 (M-) channels on synaptic integration (Shah et al. 2011)
NEURON mod files from the paper: Shah et al., 2011. In this study, using a combination of electrophysiology and computational modelling, we show that these channels selectively influence peri-somatic but not dendritic post-synaptic excitatory synaptic potential (EPSP) integration in CA1 pyramidal cells. This may be important for their relative contributions to physiological processes such as synaptic plasticity as well as patho-physiological conditions such as epilepsy.
151. CA1 stratum radiatum interneuron multicompartmental model (Katona et al. 2011)
The model examines dendritic NMDA-spike generation and propagation in the dendrites of CA1 stratum radiatum interneurons. It contains NMDA-channels in a clustered pattern on a dendrite and K-channels. The simulation shows the whole NMDA spike and the rising phase of the traces in separate windows.
152. CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994)
Fig. 2A and 3 are reproduced in this simulation of Pinsky PF, Rinzel J (1994).
153. CA3 pyramidal neuron (Lazarewicz et al 2002)
The model shows how using a CA1-like distribution of active dendritic conductances in a CA3 morphology results in dendritic initiation of spikes during a burst.
154. CA3 Pyramidal Neuron (Migliore et al 1995)
Model files from the paper: M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer simulations of morphologically reconstructed CA3 hippocampal neurons, J. Neurophysiol. 73, 1157-1168 (1995). Demonstrates how the same cell could be bursting or non bursting according to the Ca-independent conductance densities. Includes calculation of intracellular Calcium. Instructions are provided in the below README file. Contact michele.migliore@pa.ibf.cnr.it if you have any questions about the implementation of the model.
155. CA3 pyramidal neuron (Safiulina et al. 2010)
In this review some of the recent work carried out in our laboratory concerning the functional role of GABAergic signalling at immature mossy fibres (MF)-CA3 principal cell synapses has been highlighted. To compare the relative strength of CA3 pyramidal cell output in relation to their MF glutamatergic or GABAergic inputs in postnatal development, a realistic model was constructed taking into account the different biophysical properties of these synapses.
156. CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
In the paper, this model was used to identify how relative differences in K+ conductances, specifically KC, KM, & KD, between cells contribute to the different characteristics of the three types of firing patterns observed experimentally.
157. CA3 pyramidal neurons: Kv1.2 mediates modulation of cortical inputs (Hyun et al., 2015)
This model simulates the contribution of dendritic Na+ and D-type K+ channels to EPSPs at three different locations of apical dendrites, which mimicking innervation sites of mossy fibers (MF), recurrent fibers (AC), and perforant pathway (PP).
158. Caffeine-induced electrical oscillations in Aplysia neurons (Komendantov, Kononenko 2000)
It has been found that in cultured Aplysia neurons bath applications of 40 mM cafffeine evokes oscillations of the membrane potential with about a 40 mV amplitude with a frequency of 0.2 to 0.5 Hz. The most probable mechanism of these caffeine-induced oscillations is inhibition of voltage-activated outward potassium current and, as can be seen from our mathematical modeling, slowdown of inactivation of inward sodium current. It seems likely that these oscillations have a purely membrane origin. Please see paper for results and details.
159. Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
Inward and outward currents of the olfactory bulb juxtaglomerular cells are characterized in the experiments and modeling in these two Masurkar and Chen 2011 papers.
160. Calcium influx during striatal upstates (Evans et al. 2013)
"... To investigate the mechanisms that underlie the relationship between calcium and AP timing, we have developed a realistic biophysical model of a medium spiny neuron (MSN). ... Using this model, we found that either the slow inactivation of dendritic sodium channels (NaSI) or the calcium inactivation of voltage-gated calcium channels (CDI) can cause high calcium corresponding to early APs and lower calcium corresponding to later APs. We found that only CDI can account for the experimental observation that sensitivity to AP timing is dependent on NMDA receptors. Additional simulations demonstrated a mechanism by which MSNs can dynamically modulate their sensitivity to AP timing and show that sensitivity to specifically timed pre- and postsynaptic pairings (as in spike timing-dependent plasticity protocols) is altered by the timing of the pairing within the upstate. …"
161. Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up and down states.
162. Calcium spikes in basal dendrites (Kampa and Stuart 2006)
This model was published in Kampa & Stuart (2006) J Neurosci 26(28):7424-32. The simulation creates two plots showing voltage and calcium changes in basal dendrites of layer 5 pyramidal neurons during action potential backpropagation. created by B. Kampa (2006)
163. Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
A morphologically realistic, conductance-based model equipped with kinetic schemes that govern several calcium signalling modules and pathways in CA1 pyramidal neurons
164. Calculating the consequences of left-shifted Nav channel activity in sick cells (Joos et al 2017)
"Two features common to diverse sick excitable cells are “leaky” Nav channels and bleb damage-damaged membranes. The bleb damage, we have argued, causes a channel kinetics based “leakiness.” Recombinant (node of Ranvier type) Nav1.6 channels voltage-clamped in mechanically-blebbed cell-attached patches undergo a damage intensity dependent kinetic change. Specifically, they experience a coupled hyperpolarizing (left) shift of the activation and inactivation processes. The biophysical observations on Nav1.6 currents formed the basis of Nav-Coupled Left Shift (Nav-CLS) theory. Node of Ranvier excitability can be modeled with Nav-CLS imposed at varying LS intensities and with varying fractions of total nodal membrane affected. Mild damage from which sick excitable cells might recover is of most interest pathologically. Accordingly, Na+/K+ ATPase (pump) activity was included in the modeling. As we described more fully in our other recent reviews, Nav-CLS in nodes with pumps proves sufficient to predict many of the pathological excitability phenomena reported for sick excitable cells. ..."
165. Carbon nanotubes as electrical interfaces to neurons (Giugliano et al. 2008)
In the present NEURON model, we explore simple phenomenological models of the extracellular coupling, occurring at the neuron-metal microelectrode junction and (possibly) at the neuron-carbon nanotube junction.
166. Cardiac action potentials and pacemaker activity of sinoatrial node (DiFrancesco & Noble 1985)
"Equations have been developed to describe cardiac action potentials and pacemaker activity. The model takes account of extensive developments in experimental work ..."
167. Cardiac Atrial Cell (Courtemanche et al 1998)
Marc Courtemanche, Rafael J. Ramirez, and Stanley Nattel. Ionic mechanisms underlying human atrial action potential properties insights from a mathematical model Am J Physiol Heart Circ Physiol 1998 275: H301-H321. The implementation of this model in NEURON was contributed by Ingemar Jacobson.
168. Cardiac Atrial Cell (Courtemanche et al 1998) (C++)
The mechanisms underlying many important properties of the human atrial action potential (AP) are poorly understood. Using specific formulations of the K+, Na+, and Ca2+ currents based on data recorded from human atrial myocytes, along with representations of pump, exchange, and background currents, we developed a mathematical model of the AP. The model AP resembles APs recorded from human atrial samples and responds to rate changes, L-type Ca2+ current blockade, Na+/Ca2+ exchanger inhibition, and variations in transient outward current amplitude in a fashion similar to experimental recordings. Rate-dependent adaptation of AP duration, an important determinant of susceptibility to atrial fibrillation, was attributable to incomplete L-type Ca2+ current recovery from inactivation and incomplete delayed rectifier current deactivation at rapid rates. Experimental observations of variable AP morphology could be accounted for by changes in transient outward current density, as suggested experimentally. We conclude that this mathematical model of the human atrial AP reproduces a variety of observed AP behaviors and provides insights into the mechanisms of clinically important AP properties.
169. Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015)
" ... We evaluated the impact of molecular variability in the expression of cell signaling components and ion channels on electrophysiological excitability and neuromodulation. We employed a computational approach that integrated neuropeptide receptor-mediated signaling with electrophysiology. We simulated a population of neurons in which expression levels of a neuropeptide receptor and multiple ion channels were simultaneously varied within a physiological range. We analyzed the effects of variation on the electrophysiological response to a neuropeptide stimulus. ..."
170. Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
"... Our results suggest that a complex complement of ionic mechanisms is needed to fine-tune separate aspects of the neuronal response dynamics. Simulations also suggest that the Golgi cell may exploit these mechanisms to obtain a fine regulation of timing of incoming mossy fiber responses and granular layer circuit oscillation and bursting."
171. Cerebellar granular layer (Maex and De Schutter 1998)
Circuit model of the granular layer representing a one-dimensional array of single-compartmental granule cells (grcs) and Golgi cells (Gocs). This paper examines the effects of feedback inhibition (grc -> Goc -> grc) versus feedforward inhibition (mossy fibre -> Goc -> grc) on synchronization and oscillatory behaviour.
172. Cerebellar nuclear neuron (Sudhakar et al., 2015)
"... In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. ..."
173. Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
This is the GENESIS 2.3 implementation of a multi-compartmental deep cerebellar nucleus (DCN) neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than -70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum.
174. Cerebellar purkinje cell (De Schutter and Bower 1994)
Tutorial simulation of a cerebellar Purkinje cell. This tutorial is based upon a GENESIS simulation of a cerebellar Purkinje cell, modeled and fine-tuned by Erik de Schutter. The tutorial assumes that you have a basic knowledge of the Purkinje cell and its synaptic inputs. It gives visual insight in how different properties as concentrations and channel conductances vary and interact within a real Purkinje cell.
175. Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006)
Purkinje neurons spontaneously generate action potentials in the absence of synaptic drive and thereby exert a tonic, yet plastic, input to their target cells in the deep cerebellar nuclei. Purkinje neurons express two ionic currents with biophysical properties that are specialized for high-frequency firing: resurgent sodium currents and potassium currents mediated by Kv3.3. Numerical simulations indicated that Kv3.3 increases the spontaneous firing rate via cooperation with resurgent sodium currents. We conclude that the rate of spontaneous action potential firing of Purkinje neurons is controlled by the interaction of Kv3.3 potassium currents and resurgent sodium currents. See paper for more and details.
176. Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001)
We adopted De Schutter and Bower's model as the starting point, then modified the descriptions of several ion channels, such as the P-type Ca channel and the delayed rectifier K channel, and added class-E Ca channels and D-type K channels to the model. Our new model reproduces most of our experimental results and supports the conclusions of our experimental study that class-E Ca channels and D-type K channels are present and functioning in the dendrites of Purkinje neurons.
177. Cerebellar Purkinje Cell: resurgent Na current and high frequency firing (Khaliq et al 2003)
These mod files supplied by Dr Raman are for the below two references. ... we modeled action potential firing by simulating eight currents directly recorded from Purkinje cells in both wild-type and (mutant) med mice. Regular, high-frequency firing was slowed in med Purkinje neurons. In addition to disrupted sodium currents, med neurons had small but significant changes in potassium and leak currents. Simulations indicated that these modified non-sodium currents could not account for the reduced excitability of med cells but instead slightly facilitated spiking. The loss of NaV1.6-specific kinetics, however, slowed simulated spontaneous activity. Together, the data suggest that across a range of conditions, sodium currents with a resurgent component promote and accelerate firing. See papers for more and details.
178. Cerebellum granule cell FHF (Dover et al. 2016)
"Neurons in vertebrate central nervous systems initiate and conduct sodium action potentials in distinct subcellular compartments that differ architecturally and electrically. Here, we report several unanticipated passive and active properties of the cerebellar granule cell's unmyelinated axon. Whereas spike initiation at the axon initial segment relies on sodium channel (Nav)-associated fibroblast growth factor homologous factor (FHF) proteins to delay Nav inactivation, distal axonal Navs show little FHF association or FHF requirement for high-frequency transmission, velocity and waveforms of conducting action potentials. ...'
179. Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
"... In order to investigate the respective roles of synaptic interactions and nonsynaptic mechanisms in seizure transitions, we developed a computational model of hippocampal cells, involving the extracellular space, realistic dynamics of Na+, K+, Ca2+ and Cl - ions, glial uptake and extracellular diffusion mechanisms. We show that the network behavior with fixed ionic concentrations may be quite different from the neurons’ behavior when more detailed modeling of ionic dynamics is included. In particular, we show that in the extended model strong discharge of inhibitory interneurons may result in long lasting accumulation of extracellular K+, which sustains the depolarization of the principal cells and causes their pathological discharges. ..."
180. CN bushy, stellate neurons (Rothman, Manis 2003)
Using kinetic data from three different K+ currents in acutely isolated neurons, a single electrical compartment model representing the soma of a ventral cochlear nucleus (VCN) neuron was created. The K+ currents include a fast transient current (IA), a slow-inactivating low-threshold current (ILT), and a noninactivating high-threshold current (IHT). The model also includes a fast-inactivating Na+ current, a hyperpolarization-activated cation current (Ih), and 1-50 auditory nerve synapses. With this model, the role IA, ILT, and IHT play in shaping the discharge patterns of VCN cells is explored. Simulation results indicate these currents have specific roles in shaping the firing patterns of stellate and bushy CN cells. (see readme.txt and the papers, esp 2003c, for details). Any questions regarding these implementations should be directed to: pmanis@med.unc.edu 2 April 2004 Paul B Manis, Ph.D.
181. CN bushy, stellate neurons (Rothman, Manis 2003) (Brian 2)
This model is an updated version of Romain Brette's adaptation of Rothman & Manis (2003). The model now uses Brian 2 instead of Brian 1 and can be configured to use n cells instead of a single cell. The included figure shows that Brian 2 is more efficient than Brian 1 once the number of cells exceeds 1,000.
182. CN bushy, stellate neurons (Rothman, Manis 2003) (Brian)
Cochlear neuron model of Rothman & Manis (2003). Adapted from the Neuron implementation.
183. CN pyramidal fusiform cell (Kanold, Manis 2001)
Pyramidal cells in the dorsal cochlear nucleus (DCN) show three characteristic discharge patterns in response tones: pauser, buildup, and regular firing. Experimental evidence suggests that a rapidly inactivating K+ current (I(KIF)) plays a critical role in generating these discharge patterns. To explore the role of I(KIF), we used a computational model based on the biophysical data. The model replicated the dependence of the discharge pattern on the magnitude and duration of hyperpolarizing prepulses, and I(KIF) was necessary to convey this dependence. Experimentally, half-inactivation voltage and kinetics of I(KIF) show wide variability. Varying these parameters in the model ... suggests that pyramidal cells can adjust their sensitivity to different temporal patterns of inhibition and excitation by modulating the kinetics of I(KIF). Overall, I(KIF) is a critical conductance controlling the excitability of DCN pyramidal cells. (See readme.txt and paper for details). Any questions regarding these implementations should be directed to: pmanis@med.unc.edu 2 April 2004 Paul B Manis, Ph.D.
184. Coincidence detection in avian brainstem (Simon et al 1999)
A detailed biophysical model of coincidence detector neurons in the nucleus laminaris (auditory brainstem) which are purported to detect interaural time differences (ITDs) from Simon et al 1999.
185. Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
"A major challenge in experimental data analysis is the validation of analytical methods in a fully controlled scenario where the justification of the interpretation can be made directly and not just by plausibility. ... One solution is to use simulations of realistic models to generate ground truth data. In neuroscience, creating such data requires plausible models of neural activity, access to high performance computers, expertise and time to prepare and run the simulations, and to process the output. To facilitate such validation tests of analytical methods we provide rich data sets including intracellular voltage traces, transmembrane currents, morphologies, and spike times. ... The data were generated using the largest publicly available multicompartmental model of thalamocortical network (Traub et al. 2005), with activity evoked by different thalamic stimuli."
186. Comparison of DA-based Stochastic Algorithms (Pezo et al. 2014)
" ... Here we review and test a set of the most recently published DA (Langevin-based Diffusion Approximation) implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that asses numerical accuracy and computational efficiency on three different models: the original Hodgkin and Huxley model, a model with faster sodium channels, and a multi-compartmental model inspired in granular cells. ..."
187. Comparison of full and reduced globus pallidus models (Hendrickson 2010)
In this paper, we studied what features of realistic full model activity patterns can and cannot be preserved by morphologically reduced models. To this end, we reduced the morphological complexity of a full globus pallidus neuron model possessing active dendrites and compared its spontaneous and driven responses to those of the reduced models.
188. Compartmentalization of GABAergic inhibition by dendritic spines (Chiu et al. 2013)
A spiny dendrite model supports the hypothesis that only inhibitory inputs on spine heads, not shafts, compartmentalizes inhibition of calcium signals to spine heads as seen in paired inhibition with back-propagating action potential experiments on prefrontal cortex layer 2/3 pyramidal neurons in mouse (Chiu et al. 2013).
189. Competition for AP initiation sites in a circuit controlling simple learning (Cruz et al. 2007)
"The spatial and temporal patterns of action potential initiations were studied in a behaving leech preparation to determine the basis of increased firing that accompanies sensitization, a form of non-associative learning requiring the S-interneurons. ... The S-interneurons, one in each ganglion and linked by electrical synapses with both neighbors to form a chain, are interposed between sensory and motor neurons. ... the single site with the largest initiation rate, the S-cell in the stimulated segment, suppressed initiations in adjacent ganglia. Experiments showed this was both because (1) it received the earliest, greatest input and (2) the delayed synaptic input to the adjacent S-cells coincided with the action potential refractory period. A compartmental model of the S-cell and its inputs showed that a simple, intrinsic mechanism of inexcitability after each action potential may account for suppression of impulse initiations. Thus, a non-synaptic competition between neurons alters synaptic integration in the chain. In one mode, inputs to different sites sum independently, whereas in another, synaptic input to a single site precisely specifies the overall pattern of activity."
190. Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)
Complex model of a pyramidal CA1-neuron, adapted from Royeck, M., et al. Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons. Journal of neurophysiology 100, 2361-2380 (2008). It contains a biophysically realistic morphology comprising 265 compartments (829 segments) and 15 different distributed Ca2+- and/or voltage-dependent conductances.
191. Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
This code implements a composite model of Parkinson's disease (PD). The composite model consists of a leaky integrate-and-fire spiking neuronal network model being driven by output from a neural field model (instead of the more usual white noise drive). Three different sets of parameters were used for the field model: one with basal ganglia parameters based on data from healthy individuals, one based on data from individuals with PD, and one purely thalamocortical model. The aim of this model is to explore how the different dynamical patterns in each each of these field models affects the activity in the network model.
192. Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
Network oscillations of different frequencies, durations and amplitudes are hypothesized to coordinate information processing and transfer across brain areas. Among these oscillations, hippocampal sharp wave-ripple complexes (SPW-Rs) are one of the most prominent. SPW-Rs occurring in the hippocampus are suggested to play essential roles in memory consolidation as well as information transfer to the neocortex. To-date, most of the knowledge about SPW-Rs comes from experimental studies averaging responses from neuronal populations monitored by conventional microelectrodes. In this work, we investigate spatiotemporal characteristics of SPW-Rs and how microelectrode size and distance influence SPW-R recordings using a biophysical model of hippocampus. We also explore contributions from neuronal spikes and synaptic potentials to SPW-Rs based on two different types of network activity. Our study suggests that neuronal spikes from pyramidal cells contribute significantly to ripples while high amplitude sharp waves mainly arise from synaptic activity. Our simulations on spatial reach of SPW-Rs show that the amplitudes of sharp waves and ripples exhibit a steep decrease with distance from the network and this effect is more prominent for smaller area electrodes. Furthermore, the amplitude of the signal decreases strongly with increasing electrode surface area as a result of averaging. The relative decrease is more pronounced when the recording electrode is closer to the source of the activity. Through simulations of field potentials across a high-density microelectrode array, we demonstrate the importance of finding the ideal spatial resolution for capturing SPW-Rs with great sensitivity. Our work provides insights on contributions from spikes and synaptic potentials to SPW-Rs and describes the effect of measurement configuration on LFPs to guide experimental studies towards improved SPW-R recordings.
193. Computational aspects of feedback in neural circuits (Maass et al 2006)
It had previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate ... the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceiv- able digital or analog computation on time-varying inputs. But even with noise the resulting computational model can perform a large class of biologically relevant real-time computations that require a non-fading memory. ... In particular we show that ... generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. See paper for more and details.
194. Computational Model of a Central Pattern Generator (Cataldo et al 2006)
The buccal ganglia of Aplysia contain a central pattern generator (CPG) that mediates rhythmic movements of the foregut during feeding. This CPG is a multifunctional circuit and generates at least two types of buccal motor patterns (BMPs), one that mediates ingestion (iBMP) and another that mediates rejection (rBMP). The present study used a computational approach to examine the ways in which an ensemble of identified cells and synaptic connections function as a CPG. Hodgkin-Huxley-type models were developed that mimicked the biophysical properties of these cells and synaptic connections. The results suggest that the currently identified ensemble of cells is inadequate to produce rhythmic neural activity and that several key elements of the CPG remain to be identified.
195. Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
Bladder small DRG neurons, which are putative nociceptors pivotal to urinary bladder function, express more than a dozen different ionic membrane mechanisms: ion channels, pumps and exchangers. Small-conductance Ca2+-activated K+ (SKCa) channels which were earlier thought to be gated solely by intracellular Ca2+ concentration ([Ca]i ) have recently been shown to exhibit inward rectification with respect to membrane potential. The effect of SKCa inward rectification on the excitability of these neurons is unknown. Furthermore, studies on the role of KCa channels in repetitive firing and their contributions to different types of afterhyperpolarization (AHP) in these neurons are lacking. In order to study these phenomena, we first constructed and validated a biophysically detailed single compartment model of bladder small DRG soma constrained by physiological data. The model includes twenty-two major known membrane mechanisms along with intracellular Ca2+ dynamics comprising Ca2+ diffusion, cytoplasmic buffering, and endoplasmic reticulum (ER) and mitochondrial mechanisms. Using modelling studies, we show that inward rectification of SKCa is an important parameter regulating neuronal repetitive firing and that its absence reduces action potential (AP) firing frequency. We also show that SKCa is more potent in reducing AP spiking than the large-conductance KCa channel (BKCa) in these neurons. Moreover, BKCa was found to contribute to the fast AHP (fAHP) and SKCa to the medium-duration (mAHP) and slow AHP (sAHP). We also report that the slow inactivating A-type K+ channel (slow KA) current in these neurons is composed of 2 components: an initial fast inactivating (time constant ~ 25-100 ms) and a slow inactivating (time constant ~ 200-800 ms) current. We discuss the implications of our findings, and how our detailed model can help further our understanding of the role of C-fibre afferents in the physiology of urinary bladder as well as in certain disorders.
196. Computational neuropharmacology of CA1 pyramidal neuron (Ferrante et al. 2008)
In this paper, the model was used to show how neuroactive drugs targeting different neuronal mechanisms affect the signal integration in CA1 pyramidal neuron. Ferrante M, Blackwell KT, Migliore M, Ascoli GA (2008)
197. Computer model of clonazepam`s effect in thalamic slice (Lytton 1997)
Demonstration of the effect of a minor pharmacological synaptic change at the network level. Clonazepam, a benzodiazepine, enhances inhibition but is paradoxically useful for certain types of seizures. This simulation shows how inhibition of inhibitory cells (the RE cells) produces this counter-intuitive effect.
198. Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017)
"Corticospinal neurons (SPI), thick-tufted pyramidal neurons in motor cortex layer 5B that project caudally via the medullary pyramids, display distinct class-specific electrophysiological properties in vitro: strong sag with hyperpolarization, lack of adaptation, and a nearly linear frequency-current (FI) relationship. We used our electrophysiological data to produce a pair of large archives of SPI neuron computer models in two model classes: 1. Detailed models with full reconstruction; 2. Simplified models with 6 compartments. We used a PRAXIS and an evolutionary multiobjective optimization (EMO) in sequence to determine ion channel conductances. ..."
199. Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008)
"... To examine the effect of glial K+ uptake, we used a model neuron equipped with Na+, K+, Ca2+ and Cl&#8722; conductances, ion pumps and ion exchangers, surrounded by interstitial space and glia. The glial membrane was either “passive”, incorporating only leak channels and an ion exchange pump, or it had rectifying K+ channels. We computed ion fluxes, concentration changes and osmotic volume changes. ... We conclude that voltage gated K+ currents can boost the effectiveness of the glial “potassium buffer” and that this buffer function is important even at moderate or low levels of excitation, but especially so in pathological states."
200. Conductance-based model of Layer-4 in the barrel cortex (Argaman et Golomb 2017)
Layer 4 in the mouse barrel cortex includes hundreds of inhibitory PV neurons and thousands of excitatory neurons. Despite this fact, its dynamical state is similar to a balanced state of large neuronal circuits.
201. Conduction in uniform myelinated axons (Moore et al 1978)
Examines the relative sensitivity of the velocity of impulse propagation to changes in nodal and internodal parameters.
202. Contrast invariance by LGN synaptic depression (Banitt et al. 2007)
"Simple cells in layer 4 of the primary visual cortex of the cat show contrast-invariant orientation tuning, in which the amplitude of the peak response is proportional to the stimulus contrast but the width of the tuning curve hardly changes with contrast. This study uses a detailed model of spiny stellate cells (SSCs) from cat area 17 to explain this property. The model integrates our experimental data, including morphological and intrinsic membrane properties and the number and spatial distribution of four major synaptic input sources of the SSC: the dorsal lateral geniculate nucleus (dLGN) and three cortical sources. ... The model response is in close agreement with experimental results, in terms of both output spikes and membrane voltage (amplitude and fluctuations), with reasonable exceptions given that recurrent connections were not incorporated."
203. Control of vibrissa motoneuron firing (Harish and Golomb 2010)
We construct and analyze a single-compartment, conductance-based model of vibrissa motoneurons. Low firing rates are supported in extended regimes by adaptation currents and the minimal firing rate decreases with the persistent sodium conductance gNaP and increases with M-potassium and h-cation conductances. Suprathreshold resonance results from the locking properties of vMN firing to stimuli and from reduction of firing rates at low frequencies by slow M and afterhyperpolarization potassium conductances. h conductance only slightly affects the suprathreshold resonance. When a vMN is subjected to a small periodic CPG input, serotonergically induced gNaP elevation may transfer the system from quiescence to a firing state that is highly locked to the CPG input.
204. Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
We study how synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. We implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.
205. Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
" ... We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. ..."
206. Cortical Layer 5b pyr. cell with [Na+]i mechanisms, from Hay et al 2011 (Zylbertal et al 2017)
" ... Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+) spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. ..."
207. Cortical network model of posttraumatic epileptogenesis (Bush et al 1999)
This simulation from Bush, Prince, and Miller 1999 shows the epileptiform response (Fig. 6C) to a brief single stimulation in a 500 cell network of multicompartment models, some of which have active dendrites. The results which I obtained under Redhat Linux is shown in result.gif. Original 1997 code from Paul Bush modified slightly by Bill Lytton to make it work with current version of NEURON (5.7.139). Thanks to Paul Bush and Ken Miller for making the code available.
208. Current Dipole in Laminar Neocortex (Lee et al. 2013)
Laminar neocortical model in NEURON/Python, adapted from Jones et al 2009. https://bitbucket.org/jonescompneurolab/corticaldipole
209. Current flow during PAP in squid axon at diameter change (Joyner et al 1980)
From the paper abstract: An impulse ... sees an increased electrical load at regions of increasing diameter or at branch points with certain morphologies. We present here theoretical and experimental studies on the changes in membrane current and axial current associated with diameter changes. The theoretical studies were done with numerical solutions for cable equations that were generalized to include a varying diameter; the Hodgkin-Huxley equations were used to represent the membrane properties. ... As an action potential approaches a region of increased electrical load, the action potential amplitude and rate of rise decrease, but there is a marked increase in the magnitude of the inward sodium current. ... (See paper for more details.)
210. Currents contributing to decision making in neurons B31-B32 of Aplysia (Hurwitz et al. 2008)
"Biophysical properties of neurons contributing to the ability of an animal to decide whether or not to respond were examined. B31/B32, two pairs of bilaterally symmetrical Aplysia neurons, are major participants in deciding to initiate a buccal motor program, the neural correlate of a consummatory feeding response. B31/B32 respond to an adequate stimulus after a delay, during which time additional stimuli influence the decision to respond. B31/B32 then respond with a ramp depolarization followed by a sustained soma depolarization and axon spiking that is the expression of a commitment to respond to food. Four currents contributing to decision making in B31/B32 were characterized, and their functional effects were determined, in current- and voltage-clamp experiments and with simulations. ... Hodgkin-Huxley kinetic analyses were performed on the outward currents. Simulations using equations from these analyses showed that IK-V and IK-A slow the ramp depolarization preceding the sustained depolarization. The three outward currents contribute to braking the B31/B32 depolarization and keeping the sustained depolarization at a constant voltage. The currents identified are sufficient to explain the properties of B31/B32 that play a role in generating the decision to feed."
211. D2 dopamine receptor modulation of interneuronal activity (Maurice et al. 2004)
"... Using a combination of electrophysiological, molecular, and computational approaches, the studies reported here show that D2 dopamine receptor modulation of Na+ currents underlying autonomous spiking contributes to a slowing of discharge rate, such as that seen in vivo. Four lines of evidence support this conclusion. ... Fourth, simulation of cholinergic interneuron pacemaking revealed that a modest increase in the entry of Na+ channels into the slow-inactivated state was sufficient to account for the slowing of pacemaker discharge. These studies establish a cellular mechanism linking dopamine and the reduction in striatal cholinergic interneuron activity seen in the initial stages of associative learning." See paper for more and details.
212. Data-driven, HH-type model of the lateral pyloric (LP) cell in the STG (Nowotny et al. 2008)
This model was developed using voltage clamp data and existing LP models to assemble an initial set of currents which were then adjusted by extensive fitting to a long data set of an isolated LP neuron. The main points of the work are a) automatic fitting is difficult but works when the method is carefully adjusted to the problem (and the initial guess is good enough). b) The resulting model (in this case) made reasonable predictions for manipulations not included in the original data set, e.g., blocking some of the ionic currents. c) The model is reasonably robust against changes in parameters but the different parameters vary a lot in this respect. d) The model is suitable for use in a network and has been used for this purpose (Ivanchenko et al. 2008)
213. DBS of a multi-compartment model of subthalamic nucleus projection neurons (Miocinovic et al. 2006)
We built a comprehensive computational model of subthalamic nucleus (STN) deep brain stimulation (DBS) in parkinsonian macaques to study the effects of stimulation in a controlled environment. The model consisted of three fundamental components: 1) a three-dimensional (3D) anatomical model of the macaque basal ganglia, 2) a finite element model of the DBS electrode and electric field transmitted to the tissue medium, and 3) multicompartment biophysical models of STN projection neurons, GPi fibers of passage, and internal capsule fibers of passage. Populations of neurons were positioned within the 3D anatomical model. Neurons were stimulated with electrode positions and stimulation parameters defined as clinically effective in two parkinsonian monkeys. The model predicted axonal activation of STN neurons and GPi fibers during STN DBS. Model predictions regarding the degree of GPi fiber activation matched well with experimental recordings in both monkeys.
214. DCN fusiform cell (Ceballos et al. 2016)
Dorsal cochlear nucleus principal neurons, fusiform neurons, display heterogeneous spontaneous action potential activity and thus represent an appropriate model to study the role of different conductances in establishing firing heterogeneity. Particularly, fusiform neurons are divided into quiet, with no spontaneous firing, or active neurons, presenting spontaneous, regular firing. These modes are determined by the expression levels of an intrinsic membrane conductance, an inwardly rectifying potassium current (IKir). We used a computational model to test whether other subthreshold conductances vary homeostatically to maintain membrane excitability constant across the two subtypes. We found that Ih expression covaries specifically with IKir in order to maintain membrane resistance constant. The impact of Ih on membrane resistance is dependent on the level of IKir expression, being much smaller in quiet neurons with bigger IKir, but Ih variations are not relevant for creating the quiet and active phenotypes. We conclude that in fusiform neurons the variations of their different subthreshold conductances are limited to specific conductances in order to create firing heterogeneity and maintain membrane homeostasis.
215. Demyelinated and remyelinating axon conductances (Hines, Shrager 1991)
Hines, Michael and Peter Shrager (1991). A computational test of the requirements for conduction in demyelinated axons. J. Restorative Neurology and Neuroscience. 3 81--93.
216. Dendritic Na inactivation drives a decrease in ISI (Fernandez et al 2005)
We use a combination of dynamical analysis and electrophysiological recordings to demonstrate that spike broadening in dendrites is primarily caused by a cumulative inactivation of dendritic Na(+) current. We further show that a reduction in dendritic Na(+) current increases excitability by decreasing the interspike interval (ISI) and promoting burst firing.
217. Dendritic processing of excitatory synaptic input in GnRH neurons (Roberts et al. 2006)
"... we used electrophysiological recordings and neuronal reconstructions to generate computer models of (Gonadotopin-Releasing Hormone) GnRH neurons to examine the effects of synaptic inputs at varying distances from the soma along dendrites. ... analysis of reduced morphology models indicated that this population of cells is unlikely to exhibit low-frequency tonic spiking in the absence of synaptic input. ... applying realistic patterns of synaptic input to modeled GnRH neurons indicates that synapses located more than about 30% of the average dendrite length from the soma cannot drive firing at frequencies consistent with neuropeptide release. Thus, processing of synaptic input to dendrites of GnRH neurons is probably more complex than simple summation."
218. Dendritic properties control energy efficiency of APs in cortical pyramidal cells (Yi et al 2017)
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The energy efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how the biophysics and morphology contributes to such consumption.
219. Dendritica (Vetter et al 2001)
Dendritica is a collection of programs for relating dendritic geometry and signal propagation. The programs are based on those used for the simulations described in: Vetter, P., Roth, A. & Hausser, M. (2001) For reprint requests and additional information please contact Dr. M. Hausser, email address: m.hausser@ucl.ac.uk
220. Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
The model is based on that of Aradi & Holmes (1999; Journal of Computational Neuroscience 6, 215-235). It was used to help understand the contribution of M and SK channels to the medium afterhyperpolarization (mAHP) following one or seven spikes, as well as the contribution of M channels to the slow afterhyperpolarization (sAHP). We found that SK channels are the main determinants of the mAHP, in contrast to CA1 pyramidal cells where the mAHP is primarily caused by the opening of M channels. The model reproduced these experimental results, but we were unable to reproduce the effects of the M-channel blocker XE991 on the sAHP. It is suggested that either the XE991-sensitive component of the sAHP is not due to M channels, or that when contributing to the sAHP, these channels operate in a mode different from that associated with the mAHP.
221. Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)
In this paper, the model was used to show how that FFI can change a steeply sigmoidal input-output (I/O) curve into a double-sigmoid typical of buffer systems.
222. Deterministic chaos in a mathematical model of a snail neuron (Komendantov and Kononenko 1996)
"Chaotic regimes in a mathematical model of pacemaker activity in the bursting neurons of a snail Helix pomatia, have been investigated. The model includes a slow-wave generating mechanism, a spike-generating mechanism, an inward Ca current, intracellular Ca ions, [Ca2+]in, their fast buffering and uptake by intracellular Ca stores, and a [Ca2+]in-inhibited Ca current. Chemosensitive voltage-activated conductance, gB*, responsible for termination of the spike burst, and chemosensitive sodium conductance, gNa*, responsible for the depolarization phase of the slow-wave, were used as control parameters. ... Time courses of the membrane potential and [Ca2+]in were employed to analyse different regimes in the model. ..."
223. Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites (Golding et al 2001)
From reference below and Corrigendum: J Neurophysiol 87:1a, 2002 (better versions of figures 2, 3, 5 and 7 because of poor print quality in the original article; as of 2/2006, these figures are perfectly fine in the PDF of the original article that is currently available from the publisher's WWW site). Examines the anatomical and biophysical factors that account for the fact that retrograde invasion of spikes into the apical dendritic tree past 300 um succeeds in some CA1 pyramidal neurons but fails in others.
224. Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
"A stylized, symmetric, compartmental model of a dopamine neuron in vivo shows how rate and pattern can be modulated either concurrently or differentially. If two or more parameters in the model are varied concurrently, the baseline firing rate and the extent of bursting become decorrelated, which provides an explanation for the lack of a tight correlation in vivo and is consistent with some independence of the mechanisms that generate baseline firing rates versus bursting. ..." See paper for more and details.
225. Direct recruitment of S1 pyramidal cells and interneurons via ICMS (Overstreet et al., 2013)
Study of the pyramidal cells and interneurons recruited by intracortical microstimulation in primary somatosensory cortex. Code includes morphological models for seven types of pyramidal cells and eight types of interneurons, NEURON code to simulate ICMS, and an artificial reconstruction of a 3D slab of cortex implemented in MATLAB.
226. Discharge hysteresis in motoneurons (Powers & Heckman 2015)
"Motoneuron activity is strongly influenced by the activation of persistent inward currents (PICs) mediated by voltage-gated sodium and calcium channels. ... It has recently been suggested that a number of factors other than PIC can contribute to delta F (firing rate differences between motoneurons) values, including mechanisms underlying spike frequency adaptation and spike threshold accommodation. In the present study, we used a set of compartmental models representing a sample of 20 motoneurons with a range of thresholds to investigate how several different intrinsic motoneuron properties can potentially contribute to variations in F values. ... Our results indicate that, although other factors can contribute, variations in discharge hysteresis and delta F values primarily reflect the contribution of dendritic PICs to motoneuron activation.
227. Discrimination on behavioral time-scales mediated by reaction-diffusion in dendrites (Bhalla 2017)
Sequences of events are ubiquitous in sensory, motor, and cognitive function. Key computational operations, including pattern recognition, event prediction, and plasticity, involve neural discrimination of spatio-temporal sequences. Here we show that synaptically-driven reaction diffusion pathways on dendrites can perform sequence discrimination on behaviorally relevant time-scales. We used abstract signaling models to show that selectivity arises when inputs at successive locations are aligned with, and amplified by, propagating chemical waves triggered by previous inputs. We incorporated biological detail using sequential synaptic input onto spines in morphologically, electrically, and chemically detailed pyramidal neuronal models based on rat data.
228. Distance-dependent synaptic strength in CA1 pyramidal neurons (Menon et al. 2013)
Menon et al. (2013) describes the experimentally-observed variation in synaptic AMPA and NMDA conductance as a function of distance from the soma. This model explores the effect of this variation on somatic EPSPs and dendritic spike initiation, as compared to the case of uniform AMPA and NMDA conductance.
229. Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017)
The following computer model describes the electrophysiological properties of dopamine (DA) neurons of the ventrolateral periaquaductal gray and dorsal raphe nucleus (vlPAG/DRN). the model and how to replicate Figures 7-10 of the manuscript (Dougalis et al., 2017 J Comput Neurosci). SUMMARY: We have conducted a voltage-clamp study to provide a kinetic description of major sodium, potassium and calcium ionic currents operant on adult DA vlPAG/DRN neurons in brain slices obtained from pitx3-GFP mice. Based on experimentally derived voltage-clamp data, we then constructed a simplified, conductance-based, Hodgkin and Huxley-type, computer model and validated its behaviour against in vitro neurophysiological data. Using simulations in the computational DA model, we explored the contribution of individual ionic currents in vlPAG/DRN DA neuron’s spontaneous firing, pacemaker frequency and threshold for spike frequency adaptation in silico. The data presented here extend our previous physiological characterization (Dougalis et al. 2012) and argue that DA neurons of the vlPAG/DRN express autorhythmicity in the absence of synaptic transmission via the interplay of potassium and sodium currents without the absolute need of calcium currents. The properties of the ionic currents recorded here (IH current, IA current), the lack of small oscillating potentials in the presence of sodium channel blockers taken together with the mechanisms for autorhythmicity (reliance more on sodium rather than calcium currents) also support further the idea that vlPAG/DRN DA neurons are operationally similar to VTA, rather than SNc, DA neurons. In particular, the properties of a slowly inactivating IA current in conjunction with the small and slowly activating IH current described herein pinpoint that vlPAG/DRN DA neurons are most similar to prefrontal cortex or medial shell of nucleus accumbens projecting DA neurons (see Lammel et al. 2008, 2011).
230. Dorsal root ganglion (DRG) neuronal model (Amir, Devor 2003)
The model shows that an electrically excitable soma is not necessary for spike through-conduction in the t-shaped geometry of a dorsal root ganglion neuron axon. Electrical excitability of the soma is required, however, for soma spike invasion. See papers for details and more.
231. Dorsal root ganglion (DRG) neuronal model (Kovalsky et al. 2009)
This model, diverged from oscillatory parameters seen in live cells and failed to produce characteristic ectopic discharge patterns. Here we show that use of a more complete set of Na+ conductances--which includes several delayed components--enables simulation of the entire repertoire of oscillation-triggered electrogenic phenomena seen in live dorsal root ganglion (DRG) neurons. This includes a physiological window of induction and natural patterns of spike discharge. An INa+ component at 2-20 ms was particularly important, even though it represented only a tiny fraction of overall INa+ amplitude. With the addition of a delayed rectifier IK+ the singlet firing seen in some DRG neurons can also be simulated. The model reveals the key conductances that underlie afferent ectopia, conductances that are potentially attractive targets in the search for more effective treatments of neuropathic pain.
232. Drosophila 3rd instar larval aCC motoneuron (Gunay et al. 2015)
Single compartmental, ball-and-stick models implemented in XPP and full morphological model in Neuron. Paper has been submitted and correlates anatomical properties with electrophysiological recordings from these hard-to-access neurons. For instance we make predictions about location of the spike initiation zone, channel distributions, and synaptic input parameters.
233. DRt neuron model (Sousa et al., 2014)
Despite the importance and significant clinical impact of understanding information processing in the nociceptive system, the functional properties of neurons in many parts of this system are still unknown. In this work we performed whole-cell patch-clamp recording in rat brainstem blocks to characterize the electrophysiological properties of neurons in the dorsal reticular nucleus (DRt), a region known to be involved in pronociceptive modulation. We also compared properties of DRt neurons with those in the adjacent parvicellular reticular nucleus (PCRt) and in neighboring regions outside the reticular formation. We found that neurons in the DRt and PCRt had similar electrophysiological properties and exhibited mostly tonic-like firing patterns, whereas neurons outside the reticular formation showed a larger diversity of firing-patterns. The dominance of tonic neurons in the DRt supports previous conclusions that these neurons encode stimulus intensity through their firing frequency.
234. Duration-tuned neurons from the inferior colliculus of vertebrates (Aubie et al. 2012)
These models reproduce the responses of duration-tuned neurons in the auditory midbrain of the big brown bat, the rat, the mouse and the frog (Aubie et al. 2012). They are written in the Python interface to NEURON and a subset of the figures from Aubie et al. (2012) are pre-set in run.py (raw data is generated and a separate graphing program must be used to visualize the results).
235. Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
"... Here we demonstrate the mechanism underlying a purely neocortical delta rhythm generator and show a remarkable laminar, cell subtype and local subcircuit delineation between delta and nested theta rhythms. We show that spike timing during delta-nested theta rhythms controls an iterative, reciprocal interaction between deep and superficial cortical layers resembling the unsupervised learning processes proposed for laminar neural networks by Hinton and colleagues ... and mimicking the alternating cortical dynamics of sensory and memory processing during wakefulness."
236. Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005)
See README file for all info on how to run models under different tasks and simulated Parkinson's and medication conditions.
237. Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
This four-compartment mitral cell exhibits endogenous subthreshold oscillations, phase resetting, and evoked spike phasing properties as described in electrophysiological studies of mitral cells. It is derived from the prior work of Davison et al (2000) and Bhalla and Bower (1993). See readme.txt for details.
238. Early-onset epileptic encephalopathy (Miceli et al. 2015)
Model files from the paper "Early-Onset Epileptic Encephalopathy Caused by Gain-of-Function Mutations in the Voltage Sensor of Kv7.2 and Kv7.3 Potassium Channel Subunits" by Francesco Miceli, Maria Virginia Soldovieri, Paolo Ambrosino, Michela De Maria, Michele Migliore, Rosanna Migliore, and Maurizio Taglialatela J Neurosci. 2015 Mar 4;35(9):3782-93. The file fig7C.hoc reproduces the simulations shown in Fig.7C of the paper.
239. Effect of riluzole on action potential in cultured human skeletal muscle cells (Wang YJ et al. 2008)
Simulation studies also unraveled that both decreased conductance of I(Na) and increased conductance of I(K(Ca)) utilized to mimic riluzole actions in skeletal muscle cells could combine to decrease the amplitude of action potentials and increase the repolarization of action potentials.
240. Effect of slowly inactivating IKdr to delayed firing of action potentials (Wu et al. 2008)
"The properties of slowly inactivating delayed-rectifier K+ current (IKdr) were investigated in NG108-15 neuronal cells differentiated with long-term exposure to dibutyryl cyclic AMP. ... The computer model, in which state-dependent inactivation of IKdr was incorporated, was also implemented to predict the firing behavior present in NG108-15 cells. ... Our theoretical work and the experimental results led us to propose a pivotal role of slowly inactivating IKdr in delayed firing of APs in NG108-15 cells. The results also suggest that aconitine modulation of IKdr gating is an important molecular mechanism through which it can contribute to neuronal firing."
241. Effect of the initial synaptic state on the probability to induce LTP and LTD (Migliore et al. 2015)
NEURON mod files from the paper: M. Migliore, et al. (2015). In this paper, we investigate the possibility that the experimental protocols on synaptic plasticity may result in different consequences (e.g., LTD instead of LTP), according to the initial conditions of the stimulated synapses, and can generate confusing results. Using biophysical models of synaptic plasticity and hippocampal CA1 pyramidal neurons, we study how, why, and to what extent EPSPs observed at the soma after induction of LTP/LTD reflects the actual (local) synaptic state. The model and the results suggest a physiologically plausible explanation of why LTD induction is experimentally difficult, and they offer experimentally testable predictions on the stimulation protocols that may be more effective.
242. Effect of voltage sensitive fluorescent proteins on neuronal excitability (Akemann et al. 2009)
"Fluorescent protein voltage sensors are recombinant proteins that are designed as genetically encoded cellular probes of membrane potential using mechanisms of voltage-dependent modulation of fluorescence. Several such proteins, including VSFP2.3 and VSFP3.1, were recently reported with reliable function in mammalian cells. ... Expression of these proteins in cell membranes is accompanied by additional dynamic membrane capacitance, ... We used recordings of sensing currents and fluorescence responses of VSFP2.3 and of VSFP3.1 to derive kinetic models of the voltage-dependent signaling of these proteins. Using computational neuron simulations, we quantitatively investigated the perturbing effects of sensing capacitance on the input/output relationship in two central neuron models, a cerebellar Purkinje and a layer 5 pyramidal neuron. ... ". The Purkinje cell model is included in ModelDB.
243. Effects of Acetyl-L-carnitine on neural transmission (Lombardo et al 2004)
Acetyl-L-carnitine is known to improve many aspects of the neural activity even if its exact role in neurotransmission is still unknown. This study investigates the effects of acetyl-L-carnitine in T segmental sensory neurons of the leech Hirudo medicinalis. These neurons are involved in some forms of neural plasticity associated with learning processes. Their physiological firing is accompanied by a large afterhyperpolarization that is mainly due to the Na+/K+ ATPase activity and partially to a Ca2+-dependent K+ current. A clear-cut hyperpolarization and a significant increase of the afterhyperpolarization have been recorded in T neurons of leeches injected with 2 mM acetyl-L-carnitine some days before. Acute treatments of 50 mM acetyl-L-carnitine induced similar effects in T cells of naive animals. Moreover, in these cells, widely arborized, the afterhyperpolarization seems to play an important role in determining the action potential transmission at neuritic bifurcations. A computational model of a T cell has been previously developed considering detailed data for geometry and the modulation of the pump current. Herein, we showed that to a larger afterhyperpolarization, due to the acetyl-L-carnitine-induced effects, corresponds a decrement in the number of action potentials reaching synaptic terminals.
244. Effects of electric fields on cognitive functions (Migliore et al 2016)
The paper discusses the effects induced by an electric field at power lines frequency on neuronal activity during cognitive processes.
245. Effects of eugenol on the firing of action potentials in NG108-15 neurons (Huang et al. 2011)
"Rationale: Eugenol (EUG, 4-allyl-2-methoxyphenol), the main component of essential oil extracted from cloves, has various uses in medicine because of its potential to modulate neuronal excitability. However, its effects on the ionic mechanisms remains incompletely understood. Objectives: We aimed to investigate EUG`s effects on neuronal ionic currents and excitability, especially on voltage-gated ion currents, and to verify the effects on a hyperexcitability-temporal lobe seizure model. Methods: With the aid of patch-clamp technology, we first investigated the effects of EUG on ionic currents in NG108-15 neuronal cells differentiated with cyclic AMP. We then used modified Pinsky-Rinzel simulation modeling to evaluate its effects on spontaneous action potentials (APs). Finally, we investigated its effects on pilocarpine-induced seizures in rats. Results: EUG depressed the transient and late components of INa in the neurons. It not only increased the degree of INa inactivation, but specifically suppressed the non-inactivating INa (INa(NI)). ... In addition, EUG diminished L-type Ca2+ current and delayed rectifier K+ current only at higher concentrations. EUG`s effects on APs frequency reduction was verified by the simulation modeling. In pilocarpine-induced seizures, the EUG-treated rats showed no shorter seizure latency but a lower seizure severity and mortality than the control rats. ... Conclusion: The synergistic blocking effects of INa and INa(NI) contributes to the main mechanism through which EUG affects the firing of neuronal APs and modulate neuronal hyperexcitability such as pilocarpine-induced temporal lobe seizures."
246. Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
Several recent results suggest that boosting the CREB pathway improves hippocampal-dependent memory in healthy rodents and restores this type of memory in an AD mouse model. However, not much is known about how CREB-dependent neuronal alterations in synaptic strength, excitability and LTP can boost memory formation in the complex architecture of a neuronal network. Using a model of a CA1 microcircuit, we investigate whether hippocampal CA1 pyramidal neuron properties altered by increasing CREB activity may contribute to improve memory storage and recall. With a set of patterns presented to a network, we find that the pattern recall quality under AD-like conditions is significantly better when boosting CREB function with respect to control. The results are robust and consistent upon increasing the synaptic damage expected by AD progression, supporting the idea that the use of CREB-based therapies could provide a new approach to treat AD.
247. Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
"Inward rectifying potassium (KIR) currents in medium spiny (MS) neurons of nucleus accumbens inactivate significantly in ~40% of the neurons but not in the rest, which may lead to differences in input processing by these two groups. Using a 189-compartment computational model of the MS neuron, we investigate the influence of this property using injected current as well as spatiotemporally distributed synaptic inputs. Our study demonstrates that KIR current inactivation facilitates depolarization, firing frequency and firing onset in these neurons. ..."
248. Electrically-coupled Retzius neurons (Vazquez et al. 2009)
"Dendritic electrical coupling increases the number of effective synaptic inputs onto neurons by allowing the direct spread of synaptic potentials from one neuron to another. Here we studied the summation of excitatory postsynaptic potentials (EPSPs) produced locally and arriving from the coupled neuron (transjunctional) in pairs of electrically-coupled Retzius neurons of the leech. We combined paired recordings of EPSPs, the production of artificial EPSPs (APSPs) in neuron pairs with different coupling coefficients and simulations of EPSPs produced in the coupled dendrites. ..."
249. Electrodiffusive astrocytic and extracellular ion concentration dynamics model (Halnes et al. 2013)
An electrodiffusive formalism was developed for computing the dynamics of the membrane potential and ion concentrations in the intra- and extracellular space in a one-dimensional geometry (cable). This (general) formalism was implemented in a model of astrocytes exchanging K+, Na+ and Cl- ions with the extracellular space (ECS). A limited region (0< x<l/10 where l is the astrocyte length) of the ECS was exposed to an increase in the local K+ concentration. The model is used to explore how astrocytes contribute in transporting K+ out from high-concentration regions via a mechanism known as spatial buffering, which involves local uptake from high concentration regions, intracellular transport, and release of K+ in regions with lower ECS concentrations.
250. Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
"Selective optogenetic drive of fast-spiking (FS) interneurons (INs) leads to enhanced local field potential (LFP) power across the traditional “gamma” frequency band (20–80 Hz; Cardin et al., 2009). In contrast, drive to regular-spiking (RS) pyramidal cells enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS, and low-threshold spiking (LTS) INs. ..."
251. Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)
Serotonin (5-HT) applied to the exposed but otherwise intact nervous system results in enhanced excitability of Hermissenda type-B photoreceptors. Several ion currents in the type-B photoreceptors are modulated by 5-HT, including the A-type K+ current (IK,A), sustained Ca2+ current (ICa,S), Ca-dependent K+ current (IK,Ca), and a hyperpolarization-activated inward rectifier current (Ih). In this study,we developed a computational model that reproduces physiological characteristics of type B photoreceptors, e.g. resting membrane potential, dark-adapted spike activity, spike width, and the amplitude difference between somatic and axonal spikes. We then used the model to investigate the contribution of different ion currents modulated by 5-HT to the magnitudes of enhanced excitability produced by 5-HT. See paper for results and more details.
252. Enhancing the HH eqs: simulations based on the first publication in Biophys J (Moore 2015)
"The experiments in the Cole and Moore article in the first issue of the Biophysical Journal provided the first independent experimental confirmation of the Hodgkin-Huxley (HH) equations. A log-log plot of the K current versus time showed that raising the HH variable n to the sixth power provided the best fit to the data. Subsequent simulations using n6 and setting the resting potential at the in vivo value simplifies the HH equations by eliminating the leakage term. ..."
253. Ephaptic coupling in passive cable and MSO neuron models (Goldwyn & Rinzel 2016)
Simulation code to explore how the synchronous activity of a bundle of neurons generates extracellular voltage, and how this extracellular voltage influences the membrane potential of "nearby" neurons. A non-synaptic mechanism known as ephaptic coupling. A model of a passive cable population (including user-friendly matlab GUI) and a model of medial superior olive neurons are included.
254. Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009)
We used a previously published model of the dentate gyrus with varying degrees of mossy fibre sprouting.We preformed a sensitivity analysis where we systematically varied individual properties of ion channels. The results predict that genetic variations in the properties of sodium channels are likely to have the biggest impact on network excitability. Furthermore, these changes may be as small as 1mV, which is currently undetectable using standard experimental practices.
255. Estimation and Production of Time Intervals (Migliore et al 2001)
NEURON model files from the paper M. Migliore, L. Messineo, M. Cardaci, G.F. Ayala, Quantitative modeling of perception and production of time intervals, J.Neurophysiol. 86, 2754-2760 (2001). Contact michele.migliore@pa.ibf.cnr.it if you have any questions about the implementation of the model.
256. Excitability of DA neurons and their regulation by synaptic input (Morozova et al. 2016a, 2016b)
This code contains conductance-based models of Dopaminergic (DA) and GABAergic neurons, used in Morozova et al 2016 PLOS Computational Biology paper in order to study the type of excitability of the DA neurons and how it is influenced by the intrinsic and synaptic currents. We identified the type of excitability by calculating bifurcation diagrams and F-I curves using XPP file. This model was also used in Morozova et al 2016 J. Neurophysiology paper in order to study the effect of synchronization in GABAergic inputs on the firing dynamics of the DA neuron.
257. Excitability of PFC Basal Dendrites (Acker and Antic 2009)
".. We carried out multi-site voltage-sensitive dye imaging of membrane potential transients from thin basal branches of prefrontal cortical pyramidal neurons before and after application of channel blockers. We found that backpropagating action potentials (bAPs) are predominantly controlled by voltage-gated sodium and A-type potassium channels. In contrast, pharmacologically blocking the delayed rectifier potassium, voltage-gated calcium or Ih, conductance had little effect on dendritic action potential propagation. Optically recorded bAP waveforms were quantified and multicompartmental modeling (NEURON) was used to link the observed behavior with the underlying biophysical properties. The best-fit model included a non-uniform sodium channel distribution with decreasing conductance with distance from the soma, together with a non-uniform (increasing) A-type potassium conductance. AP amplitudes decline with distance in this model, but to a lesser extent than previously thought. We used this model to explore the mechanisms underlying two sets of published data involving high frequency trains of action potentials, and the local generation of sodium spikelets. ..."
258. Excitability of the soma in central nervous system neurons (Safronov et al 2000)
The ability of the soma of a spinal dorsal horn neuron, a spinal ventral horn neuron, and a hippocampal pyramidal neuron to generate action potentials was studied using experiments and computer simulations. By comparing recordings ... of a dorsal horn neuron with simulated responses, it was shown that computer models can be adequate for the study of somatic excitability. The modeled somata of both spinal neurons were unable to generate action potentials, showing only passive and local responses to current injections. ... In contrast to spinal neurons, the modeled soma of the hippocampal pyramidal neuron generated spikes with an overshoot of +9 mV. It is concluded that the somata of spinal neurons cannot generate action potentials and seem to resist their propagation from the axon to dendrites. ... See paper for more and details.
259. Excitation-contraction coupling/mitochondrial energetics (ECME) model (Cortassa et al. 2006)
"An intricate network of reactions is involved in matching energy supply with demand in the heart. This complexity arises because energy production both modulates and is modulated by the electrophysiological and contractile activity of the cardiac myocyte. Here, we present an integrated mathematical model of the cardiac cell that links excitation-contraction coupling with mitochondrial energy generation. The dynamics of the model are described by a system of 50 ordinary differential equations. The formulation explicitly incorporates cytoplasmic ATP-consuming processes associated with force generation and ion transport, as well as the creatine kinase reaction. Changes in the electrical and contractile activity of the myocyte are coupled to mitochondrial energetics through the ATP, Ca21, and Na1 concentrations in the myoplasmic and mitochondrial matrix compartments. ..."
260. Excitatory synaptic interactions in pyramidal neuron dendrites (Behabadi et al. 2012)
" ... We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. ..."
261. Extracellular stimulation of myelinated axon (Reilly 2016)
This is an implementation of an established "electrostimulation model" subjected to a set of stimulation protocols. Such models and protocols are used to predict the response of neural tissue to stimulation by electromagnetic fields or direct application of extracellular current in order to "evaluate the efficacy and safety of medical devices, or to develop guidelines or standards on acceptible incidental exposure that may not be related to patient exposure for medical purposes."
262. Failure of Deep Brain Stimulation in a basal ganglia neuronal network model (Dovzhenok et al. 2013)
"… Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). ... This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. …" Implemented by Andrey Dovzhenok, to whom questions should be addressed.
263. Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
We observed a new phenomenon of resonant synchronization in computer-simulated networks of inhibitory neurons in which the synaptic current has a delayed onset, reflecting finite spike propagation and synaptic transmission times. At the resonant level of network excitation, all neurons fire synchronously and rhythmically with a period approximately four times the mean delay of the onset of the inhibitory synaptic current. ... By varying the axonal delay of the inhibitory connections, networks with a realistic synaptic kinetics can be tuned to frequencies from 40 to >200 Hz. ... We conclude that the delay of the synaptic current is the primary parameter controlling the oscillation frequency of inhibitory networks and propose that delay-induced synchronization is a mechanism for fast brain rhythms that depend on intact inhibitory synaptic transmission.
264. Fast-spiking cortical interneuron (Golomb et al. 2007)
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. We hypothesize that this variability emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. We construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na+, delayed-rectifier K+, and slowly inactivating d-type K+ conductances. The model may display delay to firing. Stuttering (elliptic bursting) and subthreshold oscillations may be observed for small Na+ window current.
265. Febrile seizure-induced modifications to Ih (Chen et al 2001)
Modeling and experiments in the paper Chen K,Aradi I, Thom N,Eghbal-Ahmadi M, Baram TZ, and Soltesz I (2001) support the hypothesis that modified Ih currents strongly influence inhibitory inputs in CA1 cells and that the depolarizing shift in Ih activation plays a primary role in this process. Please see the paper for details. Some modeling details are available at http://www.ucihs.uci.edu/anatomy/soltesz/supp.htm Correspondance should be addressed to isoltesz@uci.edu (modeling was done by Ildiko Aradi, iaradi@uci.edu)
266. Feedforward heteroassociative network with HH dynamics (Lytton 1998)
Using the original McCulloch-Pitts notion of simple on and off spike coding in lieu of rate coding, an Anderson-Kohonen artificial neural network (ANN) associative memory model was ported to a neuronal network with Hodgkin-Huxley dynamics.
267. Feedforward inhibition in pyramidal cells (Ferrante & Ascoli 2015)
"Feedforward inhibition (FFI) enables pyramidal cells in area CA1 of the hippocampus (CA1PCs) to remain easily excitable while faithfully representing a broad range of excitatory inputs without quickly saturating. Despite the cortical ubiquity of FFI, its specific function is not completely understood. FFI in CA1PCs is mediated by two physiologically and morphologically distinct GABAergic interneurons: fast-spiking, perisomatic-targeting basket cells and regular-spiking, dendritic-targeting bistratified cells. These two FFI pathways might create layer-specific computational sub-domains within the same CA1PC, but teasing apart their specific contributions remains experimentally challenging. We implemented a biophysically realistic model of CA1PCs using 40 digitally reconstructed morphologies and constraining synaptic numbers, locations, amplitude, and kinetics with available experimental data. ..."
268. Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)
Neocortical Layer V model with firing behaviour adjusted to in vitro observations. The model was used to investigate the effects of IFN and PKC on the excitability of neurons (Stadler et al 2014, Reetz et al. 2014). The model contains new channel simulations for HCN1, HCN2 and the big calcium dependent potassium channel BK.
269. Firing patterns in stuttering fast-spiking interneurons (Klaus et al. 2011)
This is a morphologically extended version of the fast-spiking interneuron by Golomb et al. (2007). The model captures the stuttering firing pattern and subthreshold oscillations in response to step current input as observed in many cortical and striatal fast-spiking cells.
270. Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001)
This model (and experiments) reported in Destexhe, Rudolh, Fellous, and Sejnowski (2001) support the hypothesis that many of the characteristics of cortical neurons in vivo can be explained by fast glutamatergic and GABAergic conductances varying stochastically. Some of these cortical neuron characteristics of fluctuating synaptic origin are a depolarized membrane potential, the presence of high-amplitude membrane potential fluctuations, a low input resistance and irregular spontaneous firing activity. In addition, the point-conductance model could simulate the enhancement of responsiveness due to background activity. For more information please contact Alain Destexhe. email: Destexhe@iaf.cnrs-gif.fr
271. Fly lobular plate VS cell (Borst and Haag 1996, et al. 1997, et al. 1999)
In a series of papers the authors conducted experiments to develop understanding and models of fly visual system HS, CS, and VS neurons. This model recreates the VS neurons from those papers with enough success to merit approval by Borst although some discrepancies remain (see readme).
272. Fractional leaky integrate-and-fire model (Teka et al. 2014)
We developed the Fractional Leaky Integrate-and-Fire model that can produce downward and upward spike time adaptions observed on pyramidal cells.The adaptation emerges from the fractional exponent of the voltage dynamics.
273. Frog second-order vestibular neuron models (Rossert et al. 2011)
This implements spiking Hodgkin-Huxley type models of tonic and phasic second-order vestibular neurons. Models fitted to intracellular spike and membrane potential recordings from frog (Rana temporaria). The models can be stimulated by intracellular step current, frequency current (ZAP) or synaptic stimulation.
274. FS Striatal interneuron: K currents solve signal-to-noise problems (Kotaleski et al 2006)
... We show that a transient potassium (KA) current allows the Fast Spiking (FS) interneuron to strike a balance between sensitivity to correlated input and robustness to noise, thereby increasing its signal-to-noise ratio (SNR). First, a compartmental FS neuron model was created to match experimental data from striatal FS interneurons in cortex–striatum–substantia nigra organotypic cultures. Densities of sodium, delayed rectifier, and KA channels were optimized to replicate responses to somatic current injection. Spontaneous AMPA and GABA synaptic currents were adjusted to the experimentally measured amplitude, rise time, and interevent interval histograms. Second, two additional adjustments were required to emulate the remaining experimental observations. GABA channels were localized closer to the soma than AMPA channels to match the synaptic population reversal potential. Correlation among inputs was required to produce the observed firing rate during up-states. In this final model, KA channels were essential for suppressing down-state spikes while allowing reliable spike generation during up-states. ... Our results suggest that KA channels allow FS interneurons to operate without a decrease in SNR during conditions of increased dopamine, as occurs in response to reward or anticipated reward. See paper for more and details.
275. Functional impact of dendritic branch point morphology (Ferrante et al., 2013)
" ... Here, we first quantified the morphological variability of branch points from two-photon images of rat CA1 pyramidal neurons. We then investigated the geometrical features affecting spike initiation, propagation, and timing with a computational model validated by glutamate uncaging experiments. The results suggest that even subtle membrane readjustments at branch point could drastically alter the ability of synaptic input to generate, propagate, and time action potentials."
276. Functional structure of mitral cell dendritic tuft (Djurisic et al. 2008)
The computational modeling component of Djurisic et al. 2008 addressed two primary questions: whether amplification by active currents is necessary to explain the relatively mild attenuation suffered by tuft EPSPs spreading along the primary dendrite to the soma; what accounts for the relatively uniform peak EPSP amplitude throughout the tuft. These simulations show that passive spread from tuft to soma is sufficient to yield the low attenuation of tuft EPSPs, and that random distribution of a biologically plausible number of excitatory synapses throughout the tuft can produce the experimentally observed uniformity of depolarization.
277. Gamma and theta rythms in biophysical models of hippocampus circuits (Kopell et al. 2011)
" ... the main rhythms displayed by the hippocampus, the gamma (30–90 Hz) and theta (4–12 Hz) rhythms. We concentrate on modeling in vitro experiments, but with an eye toward possible in vivo implications. ... We use simpler biophysical models; all cells have a single compartment only, and the interneurons are restricted to two types: fast-spiking (FS) basket cells and oriens lacunosum-moleculare (O-LM) cells. ... , we aim not so much at reproducing dynamics in great detail, but at clarifying the essential mechanisms underlying the production of the rhythms and their interactions (Kopell, 2005). ..."
278. Gamma oscillations in hippocampal interneuron networks (Bartos et al 2002)
To examine whether an interneuron network with fast inhibitory synapses can act as a gamma frequency oscillator, we developed an interneuron network model based on experimentally determined properties. In comparison to previous interneuron network models, our model was able to generate oscillatory activity with higher coherence over a broad range of frequencies (20-110 Hz). In this model, high coherence and flexibility in frequency control emerge from the combination of synaptic properties, network structure, and electrical coupling.
279. Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996)
The authors investigated the hypothesis that 20-80Hz neuronal (gamma) oscillations can emerge in sparsely connected network models of GABAergic fast-spiking interneurons. They explore model NN synchronization and compare their results to anatomical and electrophysiological data from hippocampal fast spiking interneurons.
280. Gap-junction coupled network activity depends on coupled dendrites diameter (Gansert et al. 2007)
"... We have previously shown that the amplitude of electrical signals propagating across gap-junctionally coupled passive cables is maximized at a unique diameter. This suggests that threshold-dependent signals may propagate through gap junctions for a finite range of diameters around this optimal value. Here we examine the diameter dependence of action potential propagation across model networks of dendro-dendritically coupled neurons. The neurons in these models have passive soma and dendrites and an action potential-generating axon. We show that propagation of action potentials across gap junctions occurs only over a finite range of dendritic diameters and that propagation delay depends on this diameter. ...". See paper for more and details.
281. Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
" ... We use the lamprey as a model for investigating the role of this phasic modulation of the reticulospinal activity, because the brainstem–spinal cord networks are known down to the cellular level in this phylogenetically oldest extant vertebrate. We describe how the phasic modulation of reticulospinal activity from the spinal CPG ensures reliable steering/turning commands without the need for a very precise timing of on- or offset, by using a biophysically detailed large-scale (19,600 model neurons and 646,800 synapses) computational model of the lamprey brainstem–spinal cord network. To verify that the simulated neural network can control body movements, including turning, the spinal activity is fed to a mechanical model of lamprey swimming. ..."
282. GC model (Beining et al 2017)
A companion modeldb entry (NEURON only) to modeldb accession number 231862.
283. Geometry-induced features of current transfer in neuronal dendrites (Korogod, Kulagina 1998)
The impact of dendritic geometry on somatopetal transfer of the current generated by steady uniform activation of excitatory synaptic conductance distributed over passive, or active (Hodgkin-Huxley type), dendrites was studied in simulated neurons.
284. Global structure, robustness, and modulation of neuronal models (Goldman et al. 2001)
"The electrical characteristics of many neurons are remarkably robust in the face of changing internal and external conditions. At the same time, neurons can be highly sensitive to neuromodulators. We find correlates of this dual robustness and sensitivity in a global analysis of the structure of a conductance-based model neuron. ..."
285. Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008)
"Globus pallidus (GP) neurons recorded in brain slices show significant variability in intrinsic electrophysiological properties. To investigate how this variability arises, we manipulated the biophysical properties of GP neurons using computer simulations. ... Our results indicated that most of the experimental variability could be matched by varying conductance densities, which we confirmed with additional partial block experiments. Further analysis resulted in two key observations: (1) each voltage-gated conductance had effects on multiple measures such as action potential waveform and spontaneous or stimulated spike rates; and (2) the effect of each conductance was highly dependent on the background context of other conductances present. In some cases, such interactions could reverse the effect of the density of one conductance on important excitability measures. ..."
286. Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)
A set of 9 multi-compartmental rat GP neuron models (585 compartments) differing only in their expression of dendritic fast sodium channels were compared in their synaptic integration properties. Dendritic fast sodium channels were found to increase the importance of distal synapses (both excitatory AND inhibitory), increase spike timing variability with in vivo-like synaptic input, and make the model neurons highly sensitive to clustered synchronous excitation.
287. Goldfish Mauthner cell (Medan et al 2017)
" ...In fish, evasion of a diving bird that breaks the water surface depends on integrating visual and auditory stimuli with very different characteristics. How do neurons process such differential sensory inputs at the dendritic level? For that we studied the Mauthner-cells (M-cells) in the goldfish startle circuit, which receive visual and auditory inputs via two separate dendrites, both accessible for in vivo recordings. We asked if electrophysiological membrane properties and dendrite morphology, studied in vivo, play a role in selective sensory processing in the M-cell. Our results show that anatomical and electrophysiological differences between the dendrites combine to produce stronger attenuation of visually evoked post synaptic potentials (PSPs) than to auditory evoked PSPs. Interestingly, our recordings showed also cross-modal dendritic interaction, as auditory evoked PSPs invade the ventral dendrite (VD) as well as the opposite, visual PSPs invade the lateral dendrite (LD). However, these interactions were asymmetrical with auditory PSPs being more prominent in the VD than visual PSPs in the LD. Modelling experiments imply that this asymmetry is caused by active conductances expressed in the proximal segments of the VD. ..."
288. GPi/GPe neuron models (Johnson and McIntyre 2008)
Model files for two types of non-human primate neurons used in the paper: simplified versions of 1) a GPi neuron and 2) a GPe axon collateralizing in GPi en route to STN.
289. Grid cell oscillatory interference with noisy network oscillators (Zilli and Hasselmo 2010)
To examine whether an oscillatory interference model of grid cell activity could work if the oscillators were noisy neurons, we implemented these simulations. Here the oscillators are networks (either synaptically- or gap-junction--coupled) of one or more noisy neurons (either Izhikevich's simple model or a Hodgkin-Huxley--type biophysical model) which drive a postsynaptic cell (which may be integrate-and-fire, resonate-and-fire, or the simple model) which should fire spatially as a grid cell if the simulation is successful.
290. H-currents effect on the fluctuation of gamma/beta oscillations (Avella-Gonzalez et al., 2015)
This model was designed to study the impact of H-currents on the dynamics of cortical oscillations, and in paticular on the occurrence of high and low amplitude episodes (HAE, LAE) in network oscillations. The H-current is a slow, hyperpolarization-activated, depolarizing current that contributes to neuronal resonance and membrane potential. We characterized amplitude fluctuations in network oscillations by measuring the average durations of HAEs and LAEs, and explored how these were modulated by trains of external spikes, both in the presence and absence of H-channels. We looked at HAE duration, the frequency and power of network oscillations, and the effect of H-channels on the temporal voltage profile in single cells. We found that H-currents increased the oscillation frequency and, in combination with external spikes, representing input from areas outside the network, strongly decreased the synchrony of firing. As a consequence, the oscillation power and the duration of episodes during which the network exhibited high-amplitude oscillations were greatly reduced in the presence of H-channels.
291. Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
We have created a database (HCO-db) of instances of a half-center oscillator computational model [Hill et al., 2001] for analyzing how neuronal parameters influence network activity. We systematically explored the parameter space of about 10.4 million simulated HCO instances and corresponding isolated neuron model simulations obtained by varying a set of selected parameters (maximal conductance of intrinsic and synaptic currents) in all combinations using a brute-force approach. We classified these HCO instances by their activity characteristics into identifiable groups. We built an efficient relational database table (HCO-db) with the resulting instances characteristics.
292. High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
"... Using a physiological computer model of hippocampus, we investigate random synaptic activity (noise) as a potential initiator of HFOs (high-frequency oscillations). We explore parameters necessary to produce these oscillations and quantify the response using the tools of stochastic resonance (SR) and coherence resonance (CR). ... Our results show that, under normal coupling conditions, synaptic noise was able to produce gamma (30–100 Hz) frequency oscillations. Synaptic noise generated HFOs in the ripple range (100–200 Hz) when the network had parameters similar to pathological findings in epilepsy: increased gap junctions or recurrent synaptic connections, loss of inhibitory interneurons such as basket cells, and increased synaptic noise. ... We propose that increased synaptic noise and physiological coupling mechanisms are sufficient to generate gamma oscillations and that pathologic changes in noise and coupling similar to those in epilepsy can produce abnormal ripples."
293. High frequency stimulation of the Subthalamic Nucleus (Rubin and Terman 2004)
" ... Using a computational model, this paper considers the hypothesis that DBS works by replacing pathologically rhythmic basal ganglia output with tonic, high frequency firing. In our simulations of parkinsonian conditions, rhythmic inhibition from GPi to the thalamus compromises the ability of thalamocortical relay (TC) cells to respond to depolarizing inputs, such as sensorimotor signals. High frequency stimulation of STN regularizes GPi firing, and this restores TC responsiveness, despite the increased frequency and amplitude of GPi inhibition to thalamus that result. We provide a mathematical phase plane analysis of the mechanisms that determine TC relay capabilities in normal, parkinsonian, and DBS states in a reduced model. This analysis highlights the differences in deinactivation of the low-threshold calcium T -current that we observe in TC cells in these different conditions. ..."
294. Hippocampal basket cell gap junction network dynamics (Saraga et al. 2006)
2 cell network of hippocampal basket cells connected by gap junctions. Paper explores how distal gap junctions and active dendrites can tune network dynamics.
295. Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
This model is a full-scale, biologically constrained rodent hippocampal CA1 network model that includes 9 cells types (pyramidal cells and 8 interneurons) with realistic proportions of each and realistic connectivity between the cells. In addition, the model receives realistic numbers of afferents from artificial cells representing hippocampal CA3 and entorhinal cortical layer III. The model is fully scaleable and parallelized so that it can be run at small scale on a personal computer or large scale on a supercomputer. The model network exhibits spontaneous theta and gamma rhythms without any rhythmic input. The model network can be perturbed in a variety of ways to better study the mechanisms of CA1 network dynamics. Also see online code at http://bitbucket.org/mbezaire/ca1 and further information at http://mariannebezaire.com/models/ca1
296. Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
This model produces the hippocampal CA3 neural network model used in the paper below. It has two modes of operation, a default mode and a circadian mode. In the circadian mode, parameters are swept through a range of values. This model can be quite easily adapted to produce theta and gamma oscillations, as certain parameter sweeps will reveal (see Figures). BASH scripts interact with GENESIS 2.3 to implement parameter sweeps. The model contains four cell types derived from prior papers. CA3 pyramidal are derived from Traub et al (1991); Basket, stratum oriens (O-LM), and Medial Septal GABAergic (MSG) interneurons are taken from Hajos et al (2004).
297. Hippocampus CA1 pyramidal model with Na channel exhibiting slow inactivation (Menon et al. 2009)
These NEURON simulations show the effect of prolonged inactivation of sodium channels on attenuation of trains of backpropagating action potentials (bAPs). The new sodium channel model is a Markov model derived using a state-mutating genetic algorithm, as described in the paper.
298. Hippocampus temporo-septal engram shift model (Lytton 1999)
Temporo-septal engram shift model of hippocampal memory. The model posits that memories gradually move along the hippocampus from a temporal encoding site to ever more septal sites from which they are recalled. We propose that the sense of time is encoded by the location of the engram along the temporo-septal axis.
299. HMM of Nav1.7 WT and F1449V (Gurkiewicz et al. 2011)
Neuron mod files for the WT and F1449V Na+ currents from the paper: Kinetic Modeling of Nav1.7 Provides Insight Into Erythromelalgia-associated F1449V Mutation M. Gurkiewicz, A. Korngreen, S. Waxman, and A. Lampert. J.Neurophysiol. (2011). The parameters for the K65, K53 and K63 transitions were derived from microscopic reversibility relationships in the model.
300. Hodgkin-Huxley model of persistent activity in PFC neurons (Winograd et al. 2008) (NEURON python)
The paper demonstrate a form of graded persistent activity activated by hyperpolarization. This phenomenon is modeled based on a slow calcium regulation of Ih, similar to that introduced earlier for thalamic neurons (see Destexhe et al., J Neurophysiol. 1996). The only difference is that the calcium signal is here provided by the high-threshold calcium current (instead of the low-threshold calcium current in thalamic neurons).
301. Hodgkin-Huxley model of persistent activity in prefrontal cortex neurons (Winograd et al. 2008)
The paper demonstrate a form of graded persistent activity activated by hyperpolarization. This phenomenon is modeled based on a slow calcium regulation of Ih, similar to that introduced earlier for thalamic neurons (see Destexhe et al., J Neurophysiol. 1996). The only difference is that the calcium signal is here provided by the high-threshold calcium current (instead of the low-threshold calcium current in thalamic neurons).
302. Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)
"We review here the development of Hodgkin- Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are 'fast spiking', 'regular spiking', 'intrinsically bursting' and 'low-threshold spike' cells. For each class, we fit 'minimal' HH type models to experimental data. ..."
303. Hodgkin-Huxley with dynamic ion concentrations (Hubel and Dahlem, 2014)
The classical Hodgkin--Huxley (HH) model neglects the time-dependence of ion concentrations in spiking dynamics. The dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied by the resistance of the ion channels, and by the gating time constants. This model includes slow dynamics in an extended HH framework that simulates time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the surroundings. The dynamics on three distinct slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds), the buffer time constants (tens of seconds), and the slower backward buffering (minutes to hours). The modulatory dynamics and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity, and spreading depression in migraine aura and stroke, respectively.
304. Hodgkin–Huxley model with fractional gating (Teka et al. 2016)
We use fractional order derivatives to model the kinetic dynamics of the gate variables for the potassium and sodium conductances of the Hodgkin-Huxley model. Our results show that power-law dynamics of the different gate variables result in a wide range of action potential shapes and spiking patterns, even in the case where the model was stimulated with constant current. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
305. Homeostatic synaptic plasticity (Rabinowitch and Segev 2006a,b)
(2006a): "We investigated analytically and numerically the interplay between two opposing forms of synaptic plasticity: positive-feedback, long-term potentiation/depression (LTP/LTD), and negative-feedback, homeostatic synaptic plasticity (HSP). A detailed model of a CA1 pyramidal neuron, with numerous HSP-modifiable dendritic synapses, demonstrates that HSP may have an important role in selecting which spatial patterns of LTP/LTD are to last. ... Despite the negative-feedback nature of HSP, under both local and global HSP, numerous synaptic potentiations/depressions can persist. These experimentally testable results imply that HSP could be significantly involved in shaping the spatial distribution of synaptic weights in the dendrites and not just normalizing it, as is currently believed." (2006b): "Homeostatic synaptic plasticity (HSP) is an important mechanism attributed with the slow regulation of the neuron's activity. Whenever activity is chronically enhanced, HSP weakens the weights of the synapses in the dendrites and vice versa. Because dendritic morphology and its electrical properties partition the dendritic tree into functional compartments, we set out to explore the interplay between HSP and dendritic compartmentalization. ... The spatial distribution of synaptic weights throughout the dendrites will markedly differ under the local versus global HSP mechanisms. We suggest an experimental paradigm to unravel which type of HSP mechanism operates in the dendritic tree. The answer to this question will have important implications to our understanding of the functional organization of the neuron."
306. Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006)
The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit respond preferentially to long-duration, low-frequency inputs.
307. Hopfield and Brody model (Hopfield, Brody 2000)
NEURON implementation of the Hopfield and Brody model from the papers: JJ Hopfield and CD Brody (2000) JJ Hopfield and CD Brody (2001). Instructions are provided in the below readme.txt file.
308. Hypocretin and Locus Coeruleus model neurons (Carter et al 2012)
Conductance based model of the hypocretin neurons (HCRT) and another one of the Locus Coeruleus one (LC). The HCRT drive the LCs via the HCRT receptor on the LCs. The LCs lead to the awakening of the mice if the number of spikes raises over 10 spikes in 10 seconds window.
309. Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
We found that HCN2 and HCN4 channels expressed in oocytes from the frog Xenopus laevis do not display the activation kinetic changes that we (previously) observed in spHCN and HCN1. However, HCN2 and HCN4 channels display changes in their tail currents, suggesting that these channels also undergo mode shifts and that the conformational changes underlying the mode shifts are due to conserved aspects of HCN channels. With computer modelling, we show that in channels with relatively slow opening kinetics and fast mode-shift transitions, such as HCN2 and HCN4 channels, the mode shift effects are not readily observable, except in the tail kinetics. Computer simulations of sino-atrial node action potentials suggest that the HCN2 channel, together with the HCN1 channel, are important regulators of the heart firing frequency and that the mode shift is an important property to prevent arrhythmic firing. We conclude that although all HCN channels appear to undergo mode shifts – and thus may serve to prevent arrhythmic firing – it is mainly observable in ionic currents from HCN channels with faster kinetics. See papers for more and details.
310. I A in Kenyon cells resemble Shaker currents (Pelz et al 1999)
Cultured Kenyon cells from the mushroom body of the honeybee, Apis mellifera, show a voltage-gated, fast transient K1 current that is sensitive to 4-aminopyridine, an A current. The kinetic properties of this A current and its modulation by extracellular K1 ions were investigated in vitro with the whole cell patch-clamp technique. The A current was isolated from other voltage-gated currents either pharmacologically or with suitable voltage-clamp protocols. Hodgkin- and Huxley-style mathematical equations were used for the description of this current and for the simulation of action potentials in a Kenyon cell model. The data of the A current were incorporated into a reduced computational model of the voltage-gated currents of Kenyon cells. In addition, the model contained a delayed rectifier K current, a Na current, and a leakage current. The model reproduces several experimental features and makes predictions. See paper for details and results.
311. IA and IT interact to set first spike latency (Molineux et al 2005)
Using patch clamp and modeling, we illustrate that spike latency characteristics are the product of an interplay between I(A) and low-threshold calcium current (I(T)) that requires a steady-state difference in the inactivation parameters of the currents. Furthermore, we show that the unique first-spike latency characteristics of stellate cells have important implications for the integration of coincident IPSPs and EPSPs, such that inhibition can shift first-spike latency to differentially modulate the probability of firing.
312. Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
" ... We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of Ih. Our model demonstrated that modulation of pyramidal and basket Ih allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal Ih also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via Ih’s ability to set pyramidal excitability. ..."
313. Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
These simulations examined the atrophy induced changes in electrophysiological properties of CA3 pyramidal neurons. We found these neurons change from bursting to regular spiking as atrophy increases. Region-specific atrophy induced region-specific increases in synaptic excitability in a passive dendritic tree. All dendritic compartments of an atrophied neuron had greater synaptic excitability and a larger voltage transfer to the soma than the control neuron.
314. Impact of dendritic size and topology on pyramidal cell burst firing (van Elburg and van Ooyen 2010)
The code provided here was written to systematically investigate which of the physical parameters controlled by dendritic morphology underlies the differences in spiking behaviour observed in different realizations of the 'ping-pong'-model. Structurally varying dendritic topology and length in a simplified model allows us to separate out the physical parameters derived from morphology underlying burst firing. To perform the parameter scans we created a new NEURON tool the MultipleRunControl which can be used to easily set up a parameter scan and write the simulation results to file. Using this code we found that not input conductance but the arrival time of the return current, as measured provisionally by the average electrotonic path length, determines whether the pyramidal cell (with ping-pong model dynamics) will burst or fire single spikes.
315. Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)
" ... Here, we performed a detailed investigation of the frequency dependence of the conductivity within cortical tissue at microscopic distances using small current amplitudes within the typical (neuro)physiological micrometer and sub-nanoampere range. We investigated the propagation of LFPs, induced by extracellular electrical current injections via patch-pipettes, in acute rat brain slice preparations containing the somatosensory cortex in vitro using multielectrode arrays. Based on our data, we determined the cortical tissue conductivity over a 100-fold increase in signal frequency (5-500 Hz). Our results imply at most very weak frequency-dependent effects within the frequency range of physiological LFPs. Using biophysical modeling, we estimated the impact of different putative impedance spectra. Our results indicate that frequency dependencies of the order measured here and in most other studies have negligible impact on the typical analysis and modeling of LFP signals from extracellular brain recordings."
316. INa and IKv4.3 heterogeneity in canine LV myocytes (Flaim et al 2006)
"The roles of sustained components of INa and IKv43 in shaping the action potentials (AP) of myocytes isolated from the canine left ventricle (LV) have not been studied in detail. Here we investigate the hypothesis that these two currents can contribute substantially to heterogeneity of early repolarization and arrhythmic risk.... The resulting simulations illustrate ways in which KChIP2- and Ca2+- dependent control of IKv43 can result in a sustained outward current that can neutralize INaL in a rate- and myocyte subtype-dependent manner. Both these currents appear to play significant roles in modulating AP duration and rate dependence in midmyocardial myocytes. ... By design, these models allow upward integration into organ models or may be used as a basis for further investigations into cellular heterogeneities." See paper for more and details.
317. Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
318. Inferring connection proximity in electrically coupled networks (Cali et al. 2007)
In order to explore electrical coupling in the nervous system and its network-level organization, it is imperative to map the electrical synaptic microcircuits, in analogy with in vitro studies on monosynaptic and disynaptic chemical coupling. However, walking from cell to cell over large distances with a glass pipette is challenging, and microinjection of (fluorescent) dyes diffusing through gap-junctions remains so far the only method available to decipher such microcircuits even though technical limitations exist. Based on circuit theory, we derived analytical descriptions of the AC electrical coupling in networks of isopotential cells. We then proposed an operative electrophysiological protocol to distinguish between direct electrical connections and connections involving one or more intermediate cells. This method allows inferring the number of intermediate cells, generalizing the conventional coupling coefficient, which provides limited information. We provide here some analysis and simulation scripts that used to test our method through computer simulations, in vitro recordings, theoretical and numerical methods. Key words: Gap-Junctions; Electrical Coupling; Networks; ZAP current; Impedance.
319. Information-processing in lamina-specific cortical microcircuits (Haeusler and Maass 2006)
A major challenge for computational neuroscience is to understand the computational function of lamina-specific synaptic connection patterns in stereotypical cortical microcircuits.We approach this problem by studying ... the dynamical system defined by more realistic cortical microcircuit models as a whole and by investigating the influence that its laminar structure has on the transmission and fusion of information within this dynamical system. The circuit models that we examine consist of Hodgkin--Huxley neurons with dynamic synapses... We investigate to what extent this cortical microcircuit template supports the accumulation and fusion of information contained in generic spike inputs into layer 4 and layers 2/3 and how well it makes this information accessible to projection neurons in layers 2/3 and layer 5. ... We conclude that computer simulations of detailed lamina-specific cortical microcircuit models provide new insight into computational consequences of anatomical and physiological data. See paper for more and details.
320. Infraslow intrinsic rhythmogenesis in a subset of AOB projection neurons (Gorin et al 2016)
We investigated patterns of spontaneous neuronal activity in mouse accessory olfactory bulb mitral cells, the direct neural link between vomeronasal sensory input and limbic output. Both in vitro and in vivo, we identify a subpopulation of mitral cells that exhibit slow stereotypical rhythmic discharge. In intrinsically rhythmogenic neurons, these periodic activity patterns are maintained in absence of fast synaptic drive. The physiological mechanism underlying mitral cell autorhythmicity involves cyclic activation of three interdependent ionic conductances: subthreshold persistent Na(+) current, R-type Ca(2+) current, and Ca(2+)-activated big conductance K(+) current. Together, the interplay of these distinct conductances triggers infraslow intrinsic oscillations with remarkable periodicity, a default output state likely to affect sensory processing in limbic circuits. The model reproduces the intrinsic firing in a reconstructed single AOB mitral cell with ion channels kinetics fitted to experimental measurements of their steady state and time course.
321. Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
"How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K+]o) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled ..."
322. Input Fluctuations effects on f-I curves (Arsiero et al. 2007)
"... We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. ...our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level."
323. Interneuron Specific 3 Interneuron Model (Guet-McCreight et al, 2016)
In this paper we develop morphologically detailed multi-compartment models of Hippocampal CA1 interneuron specific 3 interneurons using cell current-clamp recordings and dendritic calcium imaging data. In doing so, we developed several variant models, as outlined in the associated README.html file.
324. Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007)
" ... Here we show that the voltage fluctuations associated with dendrosomatic synaptic activity propagate significant distances along the axon, and that modest changes in the somatic membrane potential of the presynaptic neuron modulate the amplitude and duration of axonal action potentials and, through a Ca21- dependent mechanism, the average amplitude of the postsynaptic potential evoked by these spikes. These results indicate that synaptic activity in the dendrite and soma controls not only the pattern of action potentials generated, but also the amplitude of the synaptic potentials that these action potentials initiate in local cortical circuits, resulting in synaptic transmission that is a mixture of triggered and graded (analogue) signals."
325. Intrinsic sensory neurons of the gut (Chambers et al. 2014)
A conductance base model of intrinsic neurons neurons in the gastrointestinal tract. The model contains all the major voltage-gated and calcium-gated currents observed in these neurons. This model can reproduce physiological observations such as the response to multiple brief depolarizing currents, prolonged depolarizing currents and hyperpolarizing currents. This model can be used to predict how different currents influence the excitability of intrinsic sensory neurons in the gut.
326. Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
"We investigated by a computational model of the basal ganglia the different network effects of deep brain stimulation (DBS) for Parkinson’s disease (PD) in different target sites in the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and the globus pallidus pars externa (GPe). A cellular-based model of the basal ganglia system (BGS), based on the model proposed by Rubin and Terman (J Comput Neurosci 16:211–235, 2004), was developed. ... Our results suggest that DBS in the STN could functionally restore the TC relay activity, while DBS in the GPe and in the GPi could functionally over-activate and inhibit it, respectively. Our results are consistent with the experimental and the clinical evidences on the network effects of DBS."
327. Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007)
From Zhu and Clancy: "... Here we employ theoretical simulations to examine the effects of a Timothy Syndrome (TS) mutation in the L-type Ca2+ channel on cardiac dynamics over multiple scales, from a gene mutation to protein, cell, tissue, and finally the ECG, to connect a defective Ca2+ channel to arrhythmia susceptibility. ..."
328. Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008)
"... We present a single-compartment model of a CA3 hippocampal pyramidal neuron based on recent experimental data. We then use the model to determine the roles of primary depolarizing currents in burst generation. The single compartment model incorporates accurate representations of sodium (Na+) channels (NaV1.1) and T-type calcium (Ca2+) channel subtypes (CaV3.1, CaV3.2, and CaV3.3). Our simulations predict the importance of Na+ and T-type Ca2+ channels in hippocampal pyramidal cell bursting and reveal the distinct contribution of each subtype to burst morphology. We also performed fastslow analysis in a reduced comparable model, which shows that our model burst is generated as a result of the interaction of two slow variables, the T-type Ca2+ channel activation gate and the Ca2+-dependent potassium (K+) channel activation gate. The model reproduces a range of experimentally observed phenomena including afterdepolarizing potentials, spike widening at the end of the burst, and rebound. Finally, we use the model to simulate the effects of two epilepsy-linked mutations: R1648H in NaV1.1 and C456S in CaV3.2, both of which result in increased cellular excitability."
329. Ionic mechanisms of dendritic spikes (Almog and Korngreen 2014)
We used a combined experimental and numerical parameter peeling procedure was implemented to optimize a detailed ionic mechanism for the generation and propagation of dendritic spikes in neocortical L5 pyramidal neurons. Run the cc_run.hoc to get a demo for dendritic calcium spike generated by coincidence of a back-propagating AP and distal synaptic input.
330. Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
Slow N-Methyl-D-aspartic acid (NMDA) synaptic currents are assumed to strongly contribute to the persistently elevated firing rates observed in prefrontal cortex (PFC) during working memory. During persistent activity, spiking of many neurons is highly irregular. ... The highest interspike-interval (ISI) variability occurred in a transition regime where the subthreshold membrane potential distribution shifts from mono- to bimodality, ... Predictability within irregular ISI series was significantly higher than expected from a noise-driven linear process, indicating that it might best be described through complex (potentially chaotic) nonlinear deterministic processes. Accordingly, the phenomena observed in vitro could be reproduced in purely deterministic biophysical model neurons. High spiking irregularity in these models emerged within a chaotic, close-to-bifurcation regime characterized by a shift of the membrane potential distribution from mono- to bimodality and by similar ISI return maps as observed in vitro. ... NMDA-induced irregular dynamics may have important implications for computational processes during working memory and neural coding.
331. Kenyon cells in the honeybee (Wustenberg et al 2004)
The mushroom body of the insect brain is an important locus for olfactory information processing and associative learning. ... Current- and voltage-clamp analyses were performed on cultured Kenyon cells from honeybees. ... Voltage-clamp analyses characterized a fast transient Na+ current (INa), a delayed rectifier K+ current (IK,V) and a fast transient K+ current (IK,A). Using the neurosimulator SNNAP, a Hodgkin-Huxley type model was developed and used to investigate the roles of the different currents during spiking. The model led to the prediction of a slow transient outward current (IK,ST) that was subsequently identified by reevaluating the voltage-clamp data. Simulations indicated that the primary currents that underlie spiking are INa and IK,V, whereas IK,A and IK,ST primarily determined the responsiveness of the model to stimuli such constant or oscillatory injections of current. See paper for more details.
332. Kinetic properties of voltage gated Na channel (Nayak and Sikdar 2007)
Here we illustrate novel non-linear properties of voltage gated Na+ channel induced by sustained membrane depolarization. In cell-attached patch clamp recordings of rNav1.2 channels expressed in CHO cells, we found complex non-linear changes in the molecular kinetic properties, including channel dwell times and unitary conductance of single Na+ channels that were dependent on the extent of conditioning membrane depolarization. A “molecular memory” phenomenon arises at longer depolarization characterized by clusters of dwell time events and strong autocorrelation in dwell times. Hidden Markov Modeling (HMM) ... suggested a possible explanation to the memory phenomenon. See paper for more and details.
333. KInNeSS : a modular framework for computational neuroscience (Versace et al. 2008)
The xml files provided here implement a network of excitatory and inhibitory spiking neurons, governed by either Hodgkin-Huxley or quadratic integrate-and-fire dynamical equations. The code is used to demonstrate the capabilities of the KInNeSS software package for simulation of networks of spiking neurons. The simulation protocol used here is meant to facilitate the comparison of KInNeSS with other simulators reviewed in <a href="http://dx.doi.org/10.1007/s10827-007-0038-6">Brette et al. (2007)</a>. See the associated paper "Versace et al. (2008) KInNeSS : a modular framework for computational neuroscience." for an extensive description of KInNeSS .
334. Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
" ...The aim of this study was to use an established thalamocortical computer model to determine how T-type calcium channels work in concert with cortical excitability to contribute to pathogenesis and treatment response in CAE. METHODS: The model is comprised of cortical pyramidal, cortical inhibitory, thalamocortical relay, and thalamic reticular single-compartment neurons, implemented with Hodgkin-Huxley model ion channels and connected by AMPA, GABAA , and GABAB synapses. Network behavior was simulated for different combinations of T-type calcium channel conductance, inactivation time, steady state activation/inactivation shift, and cortical GABAA conductance. RESULTS: Decreasing cortical GABAA conductance and increasing T-type calcium channel conductance converted spindle to spike and wave oscillations; smaller changes were required if both were changed in concert. In contrast, left shift of steady state voltage activation/inactivation did not lead to spike and wave oscillations, whereas right shift reduced network propensity for oscillations of any type...."
335. KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
The output of the cerebellum to the motor axis of the central nervous system is orchestrated mainly by synaptic inputs and intrinsic pacemaker activity of deep cerebellar nuclear (DCN) projection neurons. Herein, we demonstrate that the soma of these cells is enriched with KV1 channels produced by mandatory multi-merization of KV1.1, 1.2 alpha andKV beta2 subunits. Being constitutively active, the K+ current (IKV1) mediated by these channels stabilizes the rate and regulates the temporal precision of self-sustained firing of these neurons. ... Through the use of multi-compartmental modelling and ... the physiological significance of the described functions for processing and communication of information from the lateral DCN to thalamic relay nuclei is established.
336. L4 cortical barrel NN model receiving thalamic input during whisking or touch (Gutnisky et al. 2017)
Excitatory neurons in layer 4 (L4) in the barrel cortex respond relatively strongly to touch but not to whisker movement (Yu et al., Nat. Neurosci. 2016). The model explains the mechanism underlying this effect. The network is settled to filter out most stationary inputs. Brief touch input passes through because it takes time until feed-forward inhibition silences excitatory neurons receiving brief and strong thalamic excitation.
337. L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
Using a heavily constrained biophysical model of a L5 PFC microcircuit we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes.
338. L5 PFC pyramidal neurons (Papoutsi et al. 2017)
" ... Here, we use a modeling approach to investigate whether and how the morphology of the basal tree mediates the functional output of neurons. We implemented 57 basal tree morphologies of layer 5 prefrontal pyramidal neurons of the rat and identified morphological types which were characterized by different response features, forming distinct functional types. These types were robust to a wide range of manipulations (distribution of active ionic mechanisms, NMDA conductance, somatic and apical tree morphology or the number of activated synapses) and supported different temporal coding schemes at both the single neuron and the microcircuit level. We predict that the basal tree morphological diversity among neurons of the same class mediates their segregation into distinct functional pathways. ..."
339. L5 pyr. cell spiking control by oscillatory inhibition in distal apical dendrites (Li et al 2013)
This model examined how distal oscillatory inhibition influences the firing of a biophysically-detailed layer 5 pyramidal neuron model.
340. L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
"... L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na+-spiking behavior as well as key dendritic active properties, including Ca2+ spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca2+ spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. ... The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities. "
341. Lamprey spinal CPG neuron (Huss et al. 2007)
This is a model of a generic locomotor network neuron in the lamprey spinal cord. The given version is assumed to correspond to an interneuron; motoneurons can also be modelled by changing the dendritic tree morphology.
342. Large scale model of the olfactory bulb (Yu et al., 2013)
The readme file currently contains links to the results for all the 72 odors investigated in the paper, and the movie showing the network activity during learning of odor k3-3 (an aliphatic ketone).
343. Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
Mitral cells, the principal output neurons of the olfactory bulb, receive direct synaptic activation from primary sensory neurons. Shunting inhibitory inputs delivered by granule cell interneurons onto mitral cell lateral dendrites are believed to influence spike timing and underlie coordinated field potential oscillations. Lateral dendritic shunt conductances delayed spiking to a degree dependent on both their electrotonic distance and phase of onset. Recurrent inhibition significantly narrowed the distribution of mitral cell spike times, illustrating a tendency towards coordinated synchronous activity. This result suggests an essential role for early mechanisms of temporal coordination in olfaction. The model was adapted from Davison et al, 2003, but include additional noise mechanisms, long lateral dendrite, and specific synaptic point processes.
344. Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)
"... Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS) and an intrinsic bursting (IB) model neuron. ... Collectively, our results pinpoint to specific features of the neuronal response to a given stimulus that code for its ability to induce persistent activity and predict differential roles of RS and IB neurons in persistent activity expression. "
345. Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2017)
" ... In this work, we develop and apply an automated, stepwise method for fitting a neuron model to data with fine spatial resolution, such as that achievable with voltage sensitive dyes (VSDs) and Ca2+ imaging. ... We apply our method to simulated data from layer 5 pyramidal cells (L5PCs) and construct a model with reduced neuronal morphology. We connect the reduced-morphology neurons into a network and validate against simulated data from a high-resolution L5PC network model. ..."
346. Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
"... To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. ... We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics. "
347. Leech heart interneuron network model (Hill et al 2001, 2002)
We have created a computational model of the timing network that paces the heartbeat of the medicinal leech, Hirudo medicinalis. In the intact nerve cord, segmental oscillators are mutually entrained to the same cycle period. Although experiments have shown that the segmental oscillators are coupled by inhibitory coordinating interneurons, the underlying mechanisms of intersegmental coordination have not yet been elucidated. To help understand this coordination, we have created a simple computational model with two variants: symmetric and asymmetric. See references for more details. Biologically realistic network models with two, six, and eight cells and a tutorial are available at the links to Calabrese's web site below.
348. Leech Mechanosensory Neurons: Synaptic Facilitation by Reflected APs (Baccus 1998)
This model by Stephen Baccus explores the phenomena of action potential (AP) propagation at branch boints in axons. APs are sometimes transmitted down the efferent processes and sometimes are reflected back to the axon of AP origin or neither. See the paper for details. The model zip file contains a readme.txt which list introductory steps to follow to run the simulation. Stephen Baccus's email address: baccus@fas.harvard.edu
349. Leech S Cell: Modulation of Excitability by Serotonin (Burrell and Crisp 2008)
Serotonergic modulation of the afterhyperpolarization (AHP) contributes to the regulation of the excitability of the leech S cell, a neuron critical for sensitization of the shortening reflex. Pharmacological and physiological data suggest that three currents contribute to the S cell's afterhyperpolarization: a charybdotoxin-sensitive, fast calcium-dependent potassium current (fAHP); a tubocurare-sensitive, calcium-dependent potassium current (mAHP); and, a saxitoxin-sensitive, afterdepolarization current (ADP). This single-compartment model of the S cell is constructed using fAHP, mAHP and ADP currents, and shows that reduction of the conductances to mimic the effects of serotonin is sufficient to enhance excitability (repetitive firing).
350. Lillie Transition: onset of saltatory conduction in myelinating axons (Young et al. 2013)
Included are the NEURON (.hoc) files needed to generate the data used in our Young, Castelfranco, Hartline (2013) paper. The resulting .dat files are in the same folder as the MATLAB (.m) files that are used to sort the data.
351. Linear vs non-linear integration in CA1 oblique dendrites (Gómez González et al. 2011)
The hippocampus in well known for its role in learning and memory processes. The CA1 region is the output of the hippocampal formation and pyramidal neurons in this region are the elementary units responsible for the processing and transfer of information to the cortex. Using this detailed single neuron model, it is investigated the conditions under which individual CA1 pyramidal neurons process incoming information in a complex (non-linear) as opposed to a passive (linear) manner. This detailed compartmental model of a CA1 pyramidal neuron is based on one described previously (Poirazi, 2003). The model was adapted to five different reconstructed morphologies for this study, and slightly modified to fit the experimental data of (Losonczy, 2006), and to incorporate evidence in pyramidal neurons for the non-saturation of NMDA receptor-mediated conductances by single glutamate pulses. We first replicate the main findings of (Losonczy, 2006), including the very brief window for nonlinear integration using single-pulse stimuli. We then show that double-pulse stimuli increase a CA1 pyramidal neuron’s tolerance for input asynchrony by at last an order of magnitude. Therefore, it is shown using this model, that the time window for nonlinear integration is extended by more than an order of magnitude when inputs are short bursts as opposed to single spikes.
352. Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
This pyloric network model simulator is a C/C++ program that saves 384 different calcium sensor values that are candidates for activity sensors (Gunay and Prinz, 2010). The simulator was used to scan all of the 20 million pyloric network models that were previously collected in a database (Prinz et al, 2004).
353. Locational influence of dendritic PIC on input-output properties of spinal motoneurons (Kim 2017)
How does the dendritic location of calcium persistent inward current (Ca-PIC) influence dendritic excitability and firing behavior across the spinal motoneuron pool? This issue was investigated developing a model motoneuron pool where model parameters were analytically determined to reflect key motoneuron type-specific properties experimentally identified. The simulation results point out the negative relationship between the distance of Ca-PIC source from the soma and cell recruitment threshold as a basis underlying the systematic variation in input-output properties of motoneurons over the motoneuron pool.
354. Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
"A recent experimental study (Mizuseki et al., 2009) has shown that the temporal delays between population activities in successive entorhinal and hippocampal anatomical stages are longer (about 70–80 ms) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We investigate via computer simulations the mechanisms that give rise to such long temporal delays in the hippocampus structures. ... The model shows that the experimentally reported long temporal delays in the DG, CA3 and CA1 hippocampal regions are due to theta modulated somatic and axonic inhibition..."
355. Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
In Destexhe, Neubig, Ulrich, and Huguenard (1998) experiments and models examine low threshold calcium current's (IT, or T-current) distribution in thalamocortical (TC) cells. Multicompartmental modeling supports the hypothesis that IT currents have a density at least several fold higher in the dendrites than the soma. The IT current contributes significantly to rebound bursts and is thought to have important network behavior consequences. See the paper for details. See also http://cns.iaf.cnrs-gif.fr Correspondance may be addressed to Alain Destexhe: Destexhe@iaf.cnrs-gif.fr
356. Mammalian Ventricular Cell (Beeler and Reuter 1977)
This classic model of ventricular myocardial fibres was implemented by Francois Gannier. "... Four individual components of ionic current were formulated mathematically in terms of Hodgkin-Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, illa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, i.1, primarily carried by potassium ions, are further elements of the model...."
357. Markov Chain-based Stochastic Shielding Hodgkin Huxley Model (Schmandt, Galan 2012)
358. Markov models of SCN1A (NaV1.1) applied to abnormal gating and epilepsy (Clancy and Kass 2004)
"Recently, some forms of idiopathic epilepsy have been causally related to genetic mutations in neuronal ion channels. To understand disease mechanisms, it is crucial to understand how a gene defect can disrupt channel gating, which in turn can affect complex cellular dynamic processes. We develop a theoretical Markovian model of the neuronal Na+ channel NaV1.1 to explore and explain gating mechanisms underlying cellular excitability and physiological and pathophysiological mechanisms of abnormal neuronal excitability in the context of epilepsy. ..."
359. Markovian model for cardiac sodium channel (Clancy, Rudy 2002)
Complex physiological interactions determine the functional consequences of gene abnormalities and make mechanistic interpretation of phenotypes extremely difficult. A recent example is a single mutation in the C terminus of the cardiac Na(+) channel, 1795insD. The mutation causes two distinct clinical syndromes, long QT (LQT) and Brugada, leading to life-threatening cardiac arrhythmias. Coexistence of these syndromes is seemingly paradoxical; LQT is associated with enhanced Na(+) channel function, and Brugada with reduced function. Using a computational approach, we demonstrate that the 1795insD mutation exerts variable effects depending on the myocardial substrate. We develop Markov models of the wild-type and 1795insD cardiac Na(+) channels. See reference for more and details. The model files were submitted by: Dr. Jiun-Shian Wu, Dr. Sheng-Nan Wu, Dr. Ruey J. Sung, Han-Dong Chang.
360. Mathematical model for windup (Aguiar et al. 2010)
"Windup is characterized as a frequency-dependent increase in the number of evoked action potentials in dorsal horn neurons in response to electrical stimulation of afferent C-fibers. ... The approach presented here relies on mathematical and computational analysis to study the mechanism(s) underlying windup. From experimentally obtained windup profiles, we extract the time scale of the facilitation mechanisms that may support the characteristics of windup. Guided by these values and using simulations of a biologically realistic compartmental model of a wide dynamic range (WDR) neuron, we are able to assess the contribution of each mechanism for the generation of action potentials windup. ..."
361. Mature and young adult-born dentate granule cell models (T2N interface) (Beining et al. 2017)
... Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly-detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. ... T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. ..." See modeldb accession number 231818 for NEURON only code.
362. MCCAIS model (multicompartmental cooperative AIS) (Öz et al 2015)
Action potential initiation in a multi-compartmental model with cooperatively gating Na channels in the axon initial segment.
363. MEC layer II stellate cell: Synaptic mechanisms of grid cells (Schmidt-Hieber & Hausser 2013)
This study investigates the cellular mechanisms of grid field generation in Medial Entorhinal Cortex (MEC) layer II stellate cells.
364. Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
This simulation is based on the reference paper listed below. This port was made by Roger D Traub and Maciej T Lazarewicz (mlazarew at seas.upenn.edu) Thanks to Ashlen P Reid for help with porting a morphology of the cell.
365. Mechanisms of very fast oscillations in axon networks coupled by gap junctions (Munro, Borgers 2010)
Axons connected by gap junctions can produce very fast oscillations (VFOs, > 80 Hz) when stimulated randomly at a low rate. The models here explore the mechanisms of VFOs that can be seen in an axonal plexus, (Munro & Borgers, 2009): a large network model of an axonal plexus, small network models of axons connected by gap junctions, and an implementation of the model underlying figure 12 in Traub et al. (1999) . The large network model consists of 3,072 5-compartment axons connected in a random network. The 5-compartment axons are the 5 axonal compartments from the CA3 pyramidal cell model in Traub et al. (1994) with a fixed somatic voltage. The random network has the same parameters as the random network in Traub et al. (1999), and axons are stimulated randomly via a Poisson process with a rate of 2/s/axon. The small network models simulate waves propagating through small networks of axons connected by gap junctions to study how local connectivity affects the refractory period.
366. Mechanisms underlying subunit independence in pyramidal neuron dendrites (Behabadi and Mel 2014)
"...Using a detailed compartmental model of a layer 5 pyramidal neuron, and an improved method for quantifying subunit independence that incorporates a more accurate model of dendritic integration, we first established that the output of each dendrite can be almost perfectly predicted by the intensity and spatial configuration of its own synaptic inputs, and is nearly invariant to the rate of bAP-mediated 'cross-talk' from other dendrites over a 100-fold range..."
367. Medial vestibular neuron models (Quadroni and Knopfel 1994)
The structure and the parameters of the model cells were chosen to reproduce the responses of type A and type B MVNns as described in electrophysiological recordings. The emergence of oscillatory firing under these two specific experimental conditions is consistent with electrophysiological recordings not used during construction of the model. We, therefore, suggest that these models have a high predictive value.
368. MEG of Somatosensory Neocortex (Jones et al. 2007)
"... To make a direct and principled connection between the SI (somatosensory primary neocortex magnetoencephalography) waveform and underlying neural dynamics, we developed a biophysically realistic computational SI model that contained excitatory and inhibitory neurons in supragranular and infragranular layers. ... our model provides a biophysically realistic solution to the MEG signal and can predict the electrophysiological correlates of human perception."
369. Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
"... We simulated detailed conductance-based models of TTCs (Layer 5 thick tufted pyramidal cells) forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. ... Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. "
370. Midbrain torus semicircularis neuron model (Aumentado-Armstrong et al. 2015)
This paper investigates how midbrain electrosensory neurons give invariant responses to natural communication stimuli. A model explains that such invariance can be achieved by combining afferent input from ON and OFF cells.
371. Minimal cell model (Av-Ron et al 1991)
The minimal cell model (MCM) is a reduced Hodgkin-Huxley model that can exhibit excitable and oscillatory behavior. It consists of two ordinary differential equations, dV/dt for membrane voltage and dW/dt for potassium activation and sodium inactivation. The MCM has a stable membrane potential of -60mV. With constant input current of 10uA/cm2, it exhibits oscillations of 150Hz. It is based on the work by FitzHugh and Rinzel.
372. Mirror Neuron (Antunes et al 2017)
Modeling Mirror Neurons Through Spike-Timing Dependent Plasticity. This script reproduces Figure 3B.
373. MNTB Neuron: Kv3.1 currents (Wang et al 1998)
Model of Medial Nucleus of the Trapezoid Body (MNTB) neurons described in Lu-Yang Wang, Li Gan, Ian D. Forsythe and Leonard K. Kaczmarek. Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J. Physiol (1998) 509.1 183-194. Created by David Kornfeld, Byram Hills High School, Armonk NY. Please email dbk1@mindspring.com for questions about the model. See Readme.txt below for more info.
374. Model for K-ATP mediated bursting in mSNc DA neurons (Knowlton et al 2018)
"Burst firing in medial substantia nigra dopamine (mSN DA) neurons has been selectively linked to novelty-induced exploration behavior in mice. Burst firing in mSN DA neurons, in contrast to lateral SN DA neurons, requires functional ATP-sensitive potassium channels (K-ATP) both in vitro and in vivo. However, the precise role of K-ATP channels in promoting burst firing is un-known. We show experimentally that L-type calcium channel activity in mSN DA neurons en-hances open probability of K-ATP channels. We then generated a mathematical model to study the role of Ca2+ dynamics driving K-ATP channel function in mSN DA neurons during bursting. ..."
375. Model of arrhythmias in a cardiac cells network (Casaleggio et al. 2014)
" ... Here we explore the possible processes leading to the occasional onset and termination of the (usually) non-fatal arrhythmias widely observed in the heart. Using a computational model of a two-dimensional network of cardiac cells, we tested the hypothesis that an ischemia alters the properties of the gap junctions inside the ischemic area. ... In conclusion, our model strongly supports the hypothesis that non-fatal arrhythmias can develop from post-ischemic alteration of the electrical connectivity in a relatively small area of the cardiac cell network, and suggests experimentally testable predictions on their possible treatments."
376. Model of eupnea and sigh generation in respiratory network (Toporikova et al 2015)
Based on recent in vitro data obtained in the mouse embryo, we have built a computational model consisting of two compartments, interconnected through appropriate synapses. One compartment generates sighs and the other produces eupneic bursts. The model reproduces basic features of simultaneous sigh and eupnea generation (two types of bursts differing in terms of shape, amplitude, and frequency of occurrence) and mimics the effect of blocking glycinergic synapses
377. Model of long range transmission of gamma oscillation (Murray 2007)
"... A minimal mathematical model was developed for a preliminary study of long-range neural transmission of gamma oscillation from the CA3 to the entorhinal cortex via the CAI region of the hippocampus, a subset within a larger complex set of pathways. A module was created for each local population of neurons with common intrinsic properties and connectivity to simplify the connection process and make the model more flexible. Three modules were created using MATLAB Simulink® and tested to confirm that they transmit gamma through the system. The model also revealed that a portion of the signal from CAI to the entorhinal cortex may be lost in transmission under certain conditions."
378. Model of repetitive firing in Grueneberg ganglion olfactory neurons (Liu et al., 2012)
This model is constructed based on properties of Na+ and K+ currents observed in whole-cell patch clamp recordings of mouse Grueneberg ganglion neurons in acute slices. Two distinct Na+ conductances representing the TTX-sensitive and TTX-resistant currents and one delayed rectifier K+ currrent are included. By modulating the maximal conductances of Na+ currents, one can reproduce the regular, phasic, and sporadic patterns of repetitive firing found in the patch clamp experiments.
379. Model of SK current`s influence on precision in Globus Pallidus Neurons (Deister et al. 2009)
" ... In numerical simulations, the availability of both Na+ and A-type K+ channels during autonomous firing were reduced when SK channels were removed, and a nearly equal reduction in Na+ and K+ subthreshold-activated ion channel availability produced a large decrease in the neuron's slope conductance near threshold. This change made the neuron more sensitive to intrinsically generated noise. In vivo, this change would also enhance the sensitivity of GP (Globus Pallidus) neurons to small synaptic inputs."
380. Model of the cerebellar granular network (Sudhakar et al 2017)
"The granular layer, which mainly consists of granule and Golgi cells, is the first stage of the cerebellar cortex and processes spatiotemporal information transmitted by mossy fiber inputs with a wide variety of firing patterns. To study its dynamics at multiple time scales in response to inputs approximating real spatiotemporal patterns, we constructed a large-scale 3D network model of the granular layer. ..."
381. Modeling conductivity profiles in the deep neocortical pyramidal neuron (Wang K et al. 2013)
"With the rapid increase in the number of technologies aimed at observing electric activity inside the brain, scientists have felt the urge to create proper links between intracellular- and extracellular-based experimental approaches. Biophysical models at both physical scales have been formalized under assumptions that impede the creation of such links. In this work, we address this issue by proposing amulticompartment model that allows the introduction of complex extracellular and intracellular resistivity profiles. This model accounts for the geometrical and electrotonic properties of any type of neuron through the combination of four devices: the integrator, the propagator, the 3D connector, and the collector. ..."
382. Modeling interactions in Aplysia neuron R15 (Yu et al 2004)
"The biophysical properties of neuron R15 in Aplysia endow it with the ability to express multiple modes of oscillatory electrical activity, such as beating and bursting. Previous modeling studies examined the ways in which membrane conductances contribute to the electrical activity of R15 and the ways in which extrinsic modulatory inputs alter the membrane conductances by biochemical cascades and influence the electrical activity. The goals of the present study were to examine the ways in which electrical activity influences the biochemical cascades and what dynamical properties emerge from the ongoing interactions between electrical activity and these cascades." See paper for more and details.
383. Modelling reduced excitability in aged CA1 neurons as a Ca-dependent process (Markaki et al. 2005)
"We use a multi-compartmental model of a CA1 pyramidal cell to study changes in hippocampal excitability that result from aging-induced alterations in calcium-dependent membrane mechanisms. The model incorporates N- and L-type calcium channels which are respectively coupled to fast and slow afterhyperpolarization potassium channels. Model parameters are calibrated using physiological data. Computer simulations reproduce the decreased excitability of aged CA1 cells, which results from increased internal calcium accumulation, subsequently larger postburst slow afterhyperpolarization, and enhanced spike frequency adaptation. We find that aging-induced alterations in CA1 excitability can be modelled with simple coupling mechanisms that selectively link specific types of calcium channels to specific calcium-dependent potassium channels."
384. Models of Na channels from a paper on the PKC control of I Na,P (Baker 2005)
"The tetrodotoxin-resistant (TTX-r) persistent Na(+) current, attributed to Na(V)1.9, was recorded in small (< 25 mum apparent diameter) dorsal root ganglion (DRG) neurones cultured from P21 rats and from adult wild-type and Na(V)1.8 null mice. ... Numerical simulation of the up-regulation qualitatively reproduced changes in sensory neurone firing properties. ..." Note: models of NaV1.8 and NaV1.9 and also persistent and transient Na channels that collectively model Nav 1.1, 1.6, and 1.7 are present in this model.
385. Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
Theta frequency oscillation of the septo-hippocampal system has been considered as a prominent activity associated with cognitive function and affective processes. ... In the present experiments we applied a combination of computational and physiological techniques to explore the functional role of GABAA receptors in theta oscillation. ... In parallel to these experimental observations, a computational model has been constructed by implementing a septal GABA neuron model with a CA1 hippocampal model containing three types of neurons (including oriens and basket interneurons and pyramidal cells; latter modeled by multicompartmental techniques; for detailed model description with network parameters see online addendum: http://geza.kzoo.edu/theta). This connectivity made the network capable of simulating the responses of the septo-hippocampal circuitry to the modulation of GABAA transmission, and the presently described computational model proved suitable to reveal several aspects of pharmacological modulation of GABAA receptors. In addition, computational findings indicated different roles of distinctively located GABAA receptors in theta generation.
386. Motoneuron model of self-sustained firing after spinal cord injury (Kurian et al. 2011)
" ... During the acute-stage of spinal cord injury (SCI), the endogenous ability to generate plateaus is lost; however, during the chronic-stage of SCI, plateau potentials reappear with prolonged self-sustained firing that has been implicated in the development of spasticity. In this work, we extend previous modeling studies to systematically investigate the mechanisms underlying the generation of plateau potentials in motoneurons, including the influences of specific ionic currents, the morphological characteristics of the soma and dendrite, and the interactions between persistent inward currents and synaptic input. ..."
387. Multi-comp. CA1 O-LM interneuron model with varying dendritic Ih distributions (Sekulic et al 2015)
The model presented here was used to investigate possible dendritic distributions of the HCN channel-mediated current (Ih) in models of oriens-lacunosum/moleculare (O-LM) CA1 hippocampal interneurons. Physiological effects of varying the dendritic distributions consisted of examining back-propagating action potential speeds.
388. Multicompartmental cerebellar granule cell model (Diwakar et al. 2009)
A detailed multicompartmental model was used to study neuronal electroresponsiveness of cerebellar granule cells in rats. Here we show that, in cerebellar granule cells, Na+ channels are enriched in the axon, especially in the hillock, but almost absent from soma and dendrites. Numerical simulations indicated that granule cells have a compact electrotonic structure allowing EPSPs to diffuse with little attenuation from dendrites to axon. The spike arose almost simultaneously along the whole axonal ascending branch and invaded the hillock, whose activation promoted spike back-propagation with marginal delay (<200 micros) and attenuation (<20 mV) into the somato-dendritic compartment. For details check the cited article.
389. Multiple modes of a conditional neural oscillator (Epstein, Marder 1990)
We present a model for a conditional bursting neuron consisting of five conductances: Hodgkin-Huxley type time- and voltage-dependent Na+ and K+ conductances, a calcium activated voltage-dependent K+ conductance, a calcium-inhibited time- and voltage-dependent Ca++ conductance, and a leakage Cl- conductance. Different bursting and silent modes and transitions between them are analyzed in the model and compared to bursting modes in experiment. See the paper for details.
390. Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
The model demonstrates how signal amplification with NMDARs depends on the synaptic environment. When direction selectivity (DS) detection is mediated by DS inhibition, NMDARs multiply other synaptic conductances. In the case of DS tuned excitation, NMDARs contribute additively.
391. Multiscale interactions between chemical and electric signaling in LTP (Bhalla 2011)
"Synaptic plasticity leads to long-term changes in excitability, whereas cellular homeostasis maintains excitability. Both these processes involve interactions between molecular events, electrical events, and network activity. Here I explore these intersections with a multilevel model that embeds molecular events following synaptic calcium influx into a multicompartmental electrical model of a CA1 hippocampal neuron. ..."
392. Multiscale model of olfactory receptor neuron in mouse (Dougherty 2009)
Collection of XPP (.ode) files simulating the signal transduction (slow) and action potential (fast) currents in the olfactory receptor neuron of mouse. Collection contains model configured for dual odorant pulse delivery and model configured for prolonged odorant delivery. For those interested more in transduction processes, each whole cell recording model comes with a counter part file configured to show just the slow transduction current for ease of use and convenience. These transduction-only models typically run faster than the full multi-scale models but do not demonstrate action potentials.
393. Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
"… We present a new event-driven algorithm to synchronize different neuronal models, which decreases computational time and avoids superfluous synchronizations. The algorithm is implemented in the TimeScales framework. We demonstrate its use by simulating a new multiscale model of the Medium Spiny Neuron of the Neostriatum. The model comprises over a thousand dendritic spines, where the electrical model interacts with the respective instances of a biochemical model. Our results show that a multiscale model is able to exhibit changes of synaptic plasticity as a result of the interaction between electrical and biochemical signaling. …"
394. Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
" ... We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. ..."
395. Muscle spindle feedback circuit (Moraud et al, 2016)
Here, we developed a computational model of the muscle spindle feedback circuits of the rat ankle that predicts the interactions between Epidural Stimulation and spinal circuit dynamics during gait.
396. Myelinated axon conduction velocity (Brill et al 1977)
Examines conduction velocity as function of internodal length.
397. Myelinated nerve fibre myelin resistance dependent on extracellular K+ level (Brazhe et al. 2010)
Excitation leads to rise in paranodal [K]e under the myelin. This causes structural changes in myelin structure and resistance. Current model aims to simulate this aspect. This is a space-clamped model of a double-cable nerve fibre.
398. MyFirstNEURON (Houweling, Sejnowski 1997)
MyFirstNEURON is a NEURON demo by Arthur Houweling and Terry Sejnowski. Perform experiments from the book 'Electrophysiology of the Neuron, A Companion to Shepherd's Neurobiology, An Interactive Tutorial' by John Huguenard & David McCormick, Oxford University Press 1997, or design your own one or two cell simulation.
399. Na channel mutations in the dentate gyrus (Thomas et al. 2009)
These are source files to generate the data in Figure 6 from "Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability" Thomas EA, Reid CA, Petrou S, Epilepsia (2009)
400. Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008)
In this simulation action potential initiation, action potential properties and the role of axon initial segment Na+ channels are investigated in a realistic model of a layer 5 pyramidal neuron axon initial segment. The main Na+ channel properties were constrained by experimental data and the axon initial segment was reconstructed. Model parameters were constrained by direct recordings at the axon initial segment.
401. Na+ Signals in olfactory bulb neurons (granule cell model) (Ona-Jodar et al. 2017)
Simulations of Na+ during action potentials in granule cells replicated the behaviors observed in experiments.
402. NAcc medium spiny neuron: effects of cannabinoid withdrawal (Spiga et al. 2010)
Cannabinoid withdrawal produces a hypofunction of dopaminergic neurons targeting medium spiny neurons (MSN) of the forebrain. Administration of a CB1 receptor antagonist to control rats provoked structural abnormalities, reminiscent of those observed in withdrawal conditions and support the regulatory role of cannabinoids in neurogenesis, axonal growth and synaptogenesis. Experimental observations were incorporated into a realistic computational model which predicts a strong reduction in the excitability of morphologically-altered MSN, yielding a significant reduction in action potential output. These paper provided direct morphological evidence for functional abnormalities associated with cannabinoid dependence at the level of dopaminergic neurons and their post synaptic counterpart, supporting a hypodopaminergic state as a distinctive feature of the “addicted brain”.
403. Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007)
Model files for the paper Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ. Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons.,J Neurosci. 2007 Dec 5;27(49):13552-66.
404. Neocort. pyramidal cells subthreshold somatic voltage controls spike propagation (Munro Kopell 2012)
There is suggestive evidence that pyramidal cell axons in neocortex may be coupled by gap junctions into an ``axonal plexus" capable of generating Very Fast Oscillations (VFOs) with frequencies exceeding 80 Hz. It is not obvious, however, how a pyramidal cell in such a network could control its output when action potentials are free to propagate from the axons of other pyramidal cells into its own axon. We address this problem by means of simulations based on 3D reconstructions of pyramidal cells from rat somatosensory cortex. We show that somatic depolarization enables propagation via gap junctions into the initial segment and main axon, while somatic hyperpolarization disables it. We show further that somatic voltage cannot effectively control action potential propagation through gap junctions on minor collaterals; action potentials may therefore propagate freely from such collaterals regardless of somatic voltage. In previous work, VFOs are all but abolished during the hyperpolarization phase of slow-oscillations induced by anesthesia in vivo. This finding constrains the density of gap junctions on collaterals in our model and suggests that axonal sprouting due to cortical lesions may result in abnormally high gap junction density on collaterals, leading in turn to excessive VFO activity and hence to epilepsy via kindling.
405. Neocortical pyramidal neuron: deep; effects of dopamine (Durstewitz et al 2000)
"... Simulated dopamine strongly enhanced high, delay-type activity but not low, spontaneous activity in the model network. Furthermore the strength of an afferent stimulation needed to disrupt delay-type activity increased with the magnitude of the dopamine-induced shifts in network parameters, making the currently active representation much more stable. Stability could be increased by dopamine-induced enhancements of the persistent Na(+) and N-methyl-D-aspartate (NMDA) conductances. Stability also was enhanced by a reduction in AMPA conductances. The increase in GABA(A) conductances that occurs after stimulation of dopaminergic D1 receptors was necessary in this context to prevent uncontrolled, spontaneous switches into high-activity states (i.e., spontaneous activation of task-irrelevant representations). In conclusion, the dopamine-induced changes in the biophysical properties of intrinsic ionic and synaptic conductances conjointly acted to highly increase stability of activated representations in PFC networks and at the same time retain control over network behavior and thus preserve its ability to adequately respond to task-related stimuli. ..." See paper and references for more and details.
406. Nerve terminal currents at lizard neuromuscular junction (Lindgren, Moore 1989)
Loose patch clamp measurement of presynaptic ionic currents at lizard neuromuscular junction compared with computer simulations.
407. Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
We computed the steady-state activity of a large-scale model of the granular layer of the rat cerebellum. Within a few tens of milliseconds after the start of random mossy fiber input, the populations of Golgi and granule cells became entrained in a single synchronous oscillation, the basic frequency of which ranged from 10 to 40 Hz depending on the average rate of firing in the mossy fiber population. ... The synchronous, rhythmic firing pattern was robust over a broad range of biologically realistic parameter values and to parameter randomization. Three conditions, however, made the oscillations more transient and could desynchronize the entire network in the end: a very low mossy fiber activity, a very dominant excitation of Golgi cells through mossy fiber synapses (rather than through parallel fiber synapses), and a tonic activation of granule cell GABAA receptors (with an almost complete absence of synaptically induced inhibitory postsynaptic currents). The model predicts that, under conditions of strong mossy fiber input to the cerebellum, Golgi cells do not only control the strength of parallel fiber activity but also the timing of the individual spikes. Provided that their parallel fiber synapses constitute an important source of excitation, Golgi cells fire rhythmically and synchronized with granule cells over large distances along the parallel fiber axis. See paper for more and details.
408. Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
Architecturally realistic neocortical model using seven classes of excitatory and inhibitory single compartment Hodgkin-Huxley cells. This is an addendum to ModelDB Accession # 98902, Studies of stimulus parameters for seizure disruption (Anderson et al. 2007). Wiring is adapted from the minicolumn hypothesis and incorporates visual and neocortical wiring data. Simulation demonstrates spontaneous bursting onset and cessation. This activity can be induced by random fluctuations in the surrounding background input.
409. Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
"... Here we demonstrate, via a detailed computational model, a mechanism whereby physiological noise and coupling initiate oscillations and then recruit neighboring tissue, in a manner well described by a combination of Stochastic Resonance and Coherence Resonance. We develop a novel statistical method to quantify recruitment using several measures of network synchrony. This measurement demonstrates that oscillations spread via preexisting network connections such as interneuronal connections, recurrent synapses, and gap junctions, provided that neighboring cells also receive sufficient inputs in the form of random synaptic noise. ..."
410. Neurite: electrophysiological-mechanical coupling simulation framework (Garcia-Grajales et al 2015)
Neurite simulates the electrical signal propagation in myelinated and unmyelinated axons, and in dendritic trees under mechanical loading. Two different solvers are available (explicit and implicit) with sequential (CPU) and parallel (GPUs) versions
411. Neuronal dendrite calcium wave model (Neymotin et al, 2015)
"... We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP3 ), diffusible Ca2+, IP3 receptors (IP3 Rs), endoplasmic reticulum (ER) Ca2+ leak, and ER pump (SERCA) on ER. ... At least two modes of Ca2+ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell; and a pseudo-saltatory model where Ca2+ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP3 R distribution: 1. continuous homogeneous ER, 2. hotspots with increased IP3R density (IP3 R hotspots), 3. areas of increased ER density (ER stacks). All three modes produced Ca2+ waves with velocities similar to those measured in vitro (~50 - 90µm /sec). ... The measures were sensitive to changes in density and spacing of IP3 R hotspots and stacks. ... An extended electrochemical model, including voltage gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca2+ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP3 Rs and SERCA could allow modulation of Ca2+ wave propagation in diseases where Ca2+ dysregulation has been implicated. "
412. Neuronal morphology goes digital ... (Parekh & Ascoli 2013)
An illustration of a NEURON model and why reconstructing morphologies is useful in this regard (i.e. investigating spatial/temporal aspect of how different currents and voltage propagate in dendrites).
413. Neurophysiological impact of inactivation pathways in A-type K+ channels (Fineberg et al 2012)
These models predict the differential effects of varying pathways of inactivation (closed state inactivation, CSI, or open state inactivation, OSI). Specifically, Markov models of Kv4 potassium channels with CSI or CSI+OSI were inserted into the CA1 pyramidal neuron model from Migliore et al (1999; ModelDB accession #2796) to determine the neurophysiological impact of inactivation pathways. Furthermore, Markov models of Kv4.2 and Kv3.4 channels are used to illustrate a method by which to test what pathway of inactivation a channel uses.
414. Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008)
We use a realistic computational model of dopaminergic neurons in vivo to suggest that ethanol, through its effects on Ih, modifies the temporal structure of the spiking activity. The model predicts that the dopamine level may increase much more during bursting than pacemaking activity, especially in those brain regions with a slow dopamine clearance rate. The results suggest that a selective pharmacological remedy could thus be devised against the rewarding effects of ethanol that are postulated to mediate alcohol abuse and addiction, targeting the specific HCN genes expressed in dopaminergic neurons.
415. NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
Effect of NMDA subunit on spike timing dependent plasticity.
416. NMDAR & GABAB/KIR Give Bistable Dendrites: Working Memory & Sequence Readout (Sanders et al., 2013)
" ...Here, we show that the voltage dependence of the inwardly rectifying potassium (KIR) conductance activated by GABA(B) receptors adds substantial robustness to network simulations of bistability and the persistent firing that it underlies. The hyperpolarized state is robust because, at hyperpolarized potentials, the GABA(B)/KIR conductance is high and the NMDA conductance is low; the depolarized state is robust because, at depolarized potentials, the NMDA conductance is high and the GABA(B)/KIR conductance is low. Our results suggest that this complementary voltage dependence of GABA(B)/KIR and NMDA conductances makes them a "perfect couple" for producing voltage bistability."
417. Nodes of Ranvier with left-shifted Nav channels (Boucher et al. 2012)
The two programs CLSRanvier.f and propagation.f simulate the excitability of a myelinated axon with injured nodes of Ranvier. The injury is simulated as the Coupled Left Shift (CLS) of the activation(V) and inactivation(V) (availability) of a fraction of Nav channels.
418. Nodose sensory neuron (Schild et al. 1994, Schild and Kunze 1997)
This is a simulink implementation of the model described in Schild et al. 1994, and Schild and Kunze 1997 papers on Nodose sensory neurons. These papers describe the sensitivity these models have to their parameters and the match of the models to experimental data.
419. Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
This is a multi-compartmental simulation of a spiny stellate neuron which is stimulated by a thalamocortical (TC) and cortico-cortical (CC) inputs. No other cells are explicitly modeled; the presynaptic network activation is represented by the number of active synapses. Preferred and non –preferred thalamic directions thus correspond to larder/smaller number of TC synapses. This simulation revealed that randomly activated synapses can cooperatively trigger global NMDA spikes, which involve participation of most of the dendritic tree. Surprisingly, we found that although the voltage profile of the cell was uniform, the calcium influx was restricted to ‘hot spots’ which correspond to synaptic clusters or large conductance synapses
420. Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
"...We use a computational model of hippocampus to investigate possible network mechanisms underpinning normal ripples, pathological ripples, and fast ripples. Our results unify several prior findings regarding HFO mechanisms, and also make several new predictions regarding abnormal HFOs. We show that HFOs are generic, emergent phenomena whose characteristics reflect a wide range of connectivity and network input. Although produced by different mechanisms, both normal and abnormal HFOs generate similar ripple frequencies, underscoring that peak frequency is unable to distinguish the two. Abnormal ripples are generic phenomena that arise when input to pyramidal cells overcomes network inhibition, resulting in high-frequency, uncoordinated firing. In addition, fast ripples transiently and sporadically arise from the precise conditions that produce abnormal ripples. Lastly, we show that such abnormal conditions do not require any specific network structure to produce coherent HFOs, as even completely asynchronous activity is capable of producing abnormal ripples and fast ripples in this manner. These results provide a generic, network-based explanation for the link between pathological ripples and fast ripples, and a unifying description for the entire spectrum from normal ripples to pathological fast ripples."
421. Novel Na current with slow de-inactivation (Tsutsui, Oka 2002)
The authors found a novel Na current in teleost thalamic nuclei was well described by the m^3 h Hodgkin-Huxley model. The kinetic parameters derived from their experiments (see the reference for details) revealed that the h gate had a large time constant (~100ms at -80 to -50mV). This explains the thalamic neurons long refractory period and the gradual recovery of AP amplitude as the inter spike interval grows.
422. Olfactory bulb cluster formation (Migliore et al. 2010)
Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb.
423. Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)
The model supports the experimental findings on the effects of postnatal odor deprivation, and shows that a -10mV shift in the Na activation or a reduction in the dendritic length of newborn GC could independently explain the observed increase in excitability.
424. Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
425. Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
In the olfactory bulb, the processing units for odor discrimination are believed to involve dendrodendritic synaptic interactions between mitral and granule cells. There is increasing anatomical evidence that these cells are organized in columns, and that the columns processing a given odor are arranged in widely distributed arrays. Experimental evidence is lacking on the underlying learning mechanisms for how these columns and arrays are formed. We have used a simplified realistic circuit model to test the hypothesis that distributed connectivity can self-organize through an activity-dependent dendrodendritic synaptic mechanism. The results point to action potentials propagating in the mitral cell lateral dendrites as playing a critical role in this mechanism, and suggest a novel and robust learning mechanism for the development of distributed processing units in a cortical structure.
426. Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)
This model shows how backpropagating action potentials in the long lateral dendrites of mitral cells, together with granule cell actions on mitral cells within narrow columns forming glomerular units, can provide a mechanism to activate strong local inhibition between arbitrarily distant mitral cells. The simulations predict a new role for the dendrodendritic synapses in the multicolumnar organization of the granule cells.
427. Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
In a network of 6 mitral cells connected by gap junction in the apical dendrite tuft, continuous current injections of 0.06 nA are injected into 20 locations in the apical tufts of two of the mitral cells. The current injections into one of the cells starts 10 ms after the other to generate asynchronous firing in the cells (Migliore et al. 2005 protocol). Firing of the cells is asynchronous for the first 120 ms. However after the burst firing phase is completed the firing in all cells becomes synchronous.
428. Olfactory bulb mitral cell: synchronization by gap junctions (Migliore et al 2005)
In a realistic model of two electrically connected mitral cells, the paper shows that the somatically-measured experimental properties of Gap Junctions (GJs) may correspond to a variety of different local coupling strengths and dendritic distributions of GJs in the tuft. The model suggests that the propagation of the GJ-induced local tuft depolarization is a major mechanim for intraglomerular synchronization of mitral cells.
429. Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
This model of the dendrodendritic mitral-granule synaptic network generates gamma and beta oscillations as a function of the granule cell excitability, which is represented by the granule cell resting membrane potential.
430. Olfactory Bulb Network (Davison et al 2003)
A biologically-detailed model of the mammalian olfactory bulb, incorporating the mitral and granule cells and the dendrodendritic synapses between them. The results of simulation experiments with electrical stimulation agree closely in most details with published experimental data. The model predicts that the time course of dendrodendritic inhibition is dependent on the network connectivity as well as on the intrinsic parameters of the synapses. In response to simulated odor stimulation, strongly activated mitral cells tend to suppress neighboring cells, the mitral cells readily synchronize their firing, and increasing the stimulus intensity increases the degree of synchronization. For more details, see the reference below.
431. Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
432. Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
Model files for the entry "Olfactory Computations in Mitral-Granule Cell Circuits" of the Springer Encyclopedia of Computational Neuroscience by Michele Migliore and Tom Mctavish. The simulations illustrate two typical Mitral-Granule cell circuits in the olfactory bulb of vertebrates: distance-independent lateral inhibition and gating effects.
433. Olfactory Mitral Cell (Bhalla, Bower 1993)
This is a conversion to NEURON of the mitral cell model described in Bhalla and Bower (1993). The original model was written in GENESIS and is available by joining BABEL, the GENESIS users' group here http://www.genesis-sim.org/GENESIS/babel.html
434. Olfactory Mitral Cell (Davison et al 2000)
A four-compartment model of a mammalian olfactory bulb mitral cell, reduced from the complex 286-compartment model described by Bhalla and Bower (1993). The compartments are soma/axon, secondary dendrites, primary dendrite shaft and primary dendrite tuft. The reduced model runs 75 or more times faster than the full model, making its use in large, realistic network models of the olfactory bulb practical.
435. Olfactory Mitral cell: AP initiation modes (Chen et al 2002)
The mitral cell primary dendrite plays an important role in transmitting distal olfactory nerve input from olfactory glomerulus to the soma-axon initial segment. To understand how dendritic active properties are involved in this transmission, we have combined dual soma and dendritic patch recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite.
436. On stochastic diff. eq. models for ion channel noise in Hodgkin-Huxley neurons (Goldwyn et al. 2010)
" ... We analyze three SDE models that have been proposed as approximations to the Markov chain model: one that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show that the former channel-based approach can capture the distribution of channel noise and its effect on spiking in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based approaches cannot. ..."
437. Optical stimulation of a channelrhodopsin-2 positive pyramidal neuron model (Foutz et al 2012)
A computational tool to explore the underlying principles of optogenetic neural stimulation. This "light-neuron" model consists of theoretical representations of the light dynamics generated by a fiber optic in brain tissue, coupled to a multicompartment cable model of a cortical pyramidal neuron (Hu et al. 2009, ModelDB #123897) embedded with channelrhodopsin-2 (ChR2) membrane dynamics. Simulations predict that the activation threshold is sensitive to many of the properties of ChR2 (density, conductivity, and kinetics), tissue medium (scattering and absorbance), and the fiber-optic light source (diameter and numerical aperture). This model system represents a scientific instrument to characterize the effects of optogenetic neuromodulation, as well as an engineering design tool to help guide future development of optogenetic technology.
438. Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007)
Here, we use a biophysically-based model of spiking cells in the basal ganglia (Terman et al., Journal of Neuroscience, 22, 2963-2976, 2002; Rubin and Terman, Journal of Computational Neuroscience, 16, 211-235, 2004) to provide computational evidence that alternative temporal patterns of DBS inputs might be equally effective as the standard high-frequency waveforms, but require lower amplitudes. Within this model, DBS performance is assessed in two ways. First, we determine the extent to which DBS causes Gpi (globus pallidus pars interna) synaptic outputs, which are burstlike and synchronized in the unstimulated Parkinsonian state, to cease their pathological modulation of simulated thalamocortical cells. Second, we evaluate how DBS affects the GPi cells' auto- and cross-correlograms.
439. Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
The sea slug Hermissenda learns to associate light and hair cell stimulation, but not when the stimuli are temporally uncorrelated...These issues were addressed using a multi-compartmental computer model of phototransduction, calcium dynamics, and ionic currents of the Hermissenda photoreceptor...simulations show that a potassium leak channel, which closes with an increase in calcium, is required to produce both the untrained LLD and the enhanced LLD due to the decrease in voltage dependent potassium currents.
440. Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2017)
The afterhyperpolarization (AHP) is canonically viewed as a major factor underlying the refractory period, serving to limit neuronal firing rate. We recently reported (Wang et al, J. Neurophys. 116:456, 2016) that enhancing the amplitude of the fast AHP in a relatively slowly firing neuron (versus fast spiking neurons), augments neuronal excitability in dentate gyrus granule neurons expressing gain-of-function BK channels. Here we present a novel, quantitative hypothesis for how varying the amplitude of the fast AHP (fAHP) can, paradoxically, influence a subsequent spike tens of milliseconds later.
441. Paradoxical GABA-mediated excitation (Lewin et al. 2012)
"GABA is the key inhibitory neurotransmitter in the adult central nervous system, but in some circumstances can lead to a paradoxical excitation that has been causally implicated in diverse pathologies from endocrine stress responses to diseases of excitability including neuropathic pain and temporal lobe epilepsy. We undertook a computational modeling approach to determine plausible ionic mechanisms of GABAA-dependent excitation in isolated post-synaptic CA1 hippocampal neurons because it may constitute a trigger for pathological synchronous epileptiform discharge. In particular, the interplay intracellular chloride accumulation via the GABAA receptor and extracellular potassium accumulation via the K/Cl co-transporter KCC2 in promoting GABAA-mediated excitation is complex. ..."
442. Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
"[...] experimental findings suggest that MC and mTC may encode parallel and complementary odor representations. We have analyzed the functional roles of these pathways by using a morphologically and physiologically realistic three-dimensional model to explore the MC and mTC microcircuits in the glomerular layer and deeper plexiform layers. [...]"
443. Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011)
Simulation and fitting of two-compartment (active soma, passive dendrite) for different classes of cortical neurons. The fitting technique indirectly matches neuronal currents derived from somatic membrane potential data rather than fitting the voltage traces directly. The method uses an analytic solution for the somatic ion channel maximal conductances given approximate models of the channel kinetics, membrane dynamics and dendrite. This approach is tested on model-derived data for various cortical neurons.
444. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)
This detailed microcircuit model explores the network level effects of sublayer specific connectivity in the mouse CA1. The differences in strengths and numbers of synapses between PV+ basket cells and either superficial sublayer or deep sublayer pyramidal cells enables a routing of inhibition from superficial to deep pyramidal cells. At the network level of this model, the effects become quite prominent when one compares the effect on firing rates when either the deep or superficial pyramidal cells receive a selective increase in excitation.
445. Periodicity in Na channel properties alters model neuron excitability (Majumdar and Sikdar 2007)
"... We have shown earlier that the duration and amplitude of a prolonged depolarization alter all the steady state and kinetic parameters of rNav1.2a voltage gated Na channel in a pseudo-oscillatory fashion. In the present study, we show that the Hodgkin–Huxley voltage and time dependent rate constants of activation (am and bm) and fast inactivation (ah and bh), obtained from the analyses of Na currents and steady state activation and inactivation plots, following application of prepulses in both slow (1–100 s) and fast (100–1000 ms) ranges, vary with the duration of a prepulse in a pseudo-oscillatory manner. ..."
446. Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)
The program simulates a one-dimensional model of a cortical tissue with excitatory and inhibitory populations.
447. Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015)
"Midbrain dopamine neurons exhibit a novel type of bursting that we call “inverted square wave bursting” when exposed to Ca2+-activated small conductance (SK) K+ channel blockers in vitro. This type of bursting has three phases: hyperpolarized silence, spiking, and depolarization block. We find that two slow variables are required for this type of bursting, and we show that the three-dimensional bifurcation diagram for inverted square wave bursting is a folded surface with upper (depolarized) and lower (hyperpolarized) branches. ..."
448. Phase response curve of a globus pallidal neuron (Fujita et al. 2011)
We investigated how changes in ionic conductances alter the phase response curve (PRC) of a globus pallidal (GP) neuron and stability of a synchronous activity of a GP network, using a single-compartmental conductance-based neuron model. The results showed the PRC and the stability were influenced by changes in the persistent sodium current, the Kv3 potassium, the M-type potassium and the calcium-dependent potassium current.
449. Phase-locking analysis with transcranial magneto-acoustical stimulation (Yuan et al 2017)
"Transcranial magneto-acoustical stimulation (TMAS) uses ultrasonic waves and a static magnetic field to generate electric current in nerve tissues for the purpose of modulating neuronal activities. It has the advantage of high spatial resolution and penetration depth. Neuronal firing rhythms carry and transmit nerve information in neural systems. In this study, we investigated the phase-locking characteristics of neuronal firing rhythms with TMAS based on the Hodgkin-Huxley neuron model. The simulation results indicate that the modulation frequency of ultrasound can affect the phase-locking behaviors. The results of this study may help us to explain the potential firing mechanism of TMAS."
450. Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
Python and MATLAB scripts for studying the dual effects of SCZ-related genes on layer 5 pyramidal cell firing and sinoatrial node cell pacemaking properties. The study is based on two L5PC models (Hay et al. 2011, Almog & Korngreen 2014) and SANC models (Kharche et al. 2011, Severi et al. 2012).
451. PreBotzinger Complex inspiratory neuron with NaP and CAN currents (Park and Rubin 2013)
We have built on earlier models to develop a single-compartment Hodgkin-Huxley type model incorporating NaP and CAN currents, both of which can play important roles in bursting of inspiratory neurons in the PreBotzinger Complex of the mammalian respiratory brain stem. The model tracks the evolution of membrane potential, related (in)activation variables, calcium concentration, and available fraction of IP3 channels. The model can produce several types of bursting, presented and analyzed from a dynamical systems perspective in our paper.
452. Prediction for the presence of voltage-gated Ca2+ channels in myelinated central axons (Brown 2003)
"The objective of this current study was to investigate whether voltage gated Ca(2+) channels are present on axons of the adult rat optic nerve (RON). Simulations of axonal excitability using a Hodgkin-Huxley based one-compartment model incorporating I(Na), I(K) and leak currents were used to predict conditions under which the potential contribution of a Ca(2+) current to an evoked action potential could be measured. ... , as predicted by the simulation, reducing the repolarizing effect of I(K) by adding the K(+) channel blocker 4-AP revealed a Ca(2+) component on the repolarizing phase of the action potential that was blocked by the Ca(2+) channel inhibitor nifedipine."
453. Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
The authors found that linearly scaling the ion channel conductance densities of a reference model with the conductance load in 28 3D reconstructed layer 5 thick-tufted pyramidal cells was necessary to match the experimental statistics of these cells electrical firing properties.
454. Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
"... This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signaling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modeling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience."
455. Properties of aconitine-induced block of KDR current in NG108-15 neurons (Lin et al. 2008)
"The effects of aconitine (ACO), a highly toxic alkaloid, on ion currents in differentiated NG108-15 neuronal cells were investigated in this study. ACO (0.3-30 microM) suppressed the amplitude of delayed rectifier K+ current (IK(DR)) in a concentration-dependent manner with an IC50 value of 3.1 microM. The presence of ACO enhanced the rate and extent of IK(DR) inactivation, although it had no effect on the initial activation phase of IK(DR). ... A modeled cell was designed to duplicate its inhibitory effect on spontaneous pacemaking. ... Taken together, the experimental data and simulations show that ACO can block delayed rectifier K+ channels of neurons in a concentration- and state-dependent manner. Changes in action potentials induced by ACO in neurons in vivo can be explained mainly by its blocking actions on IK(DR) and INa."
456. Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)
This model is an extension of a model (<a href="http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=138379">138379</a>) recently published in Frontiers in Computational Neuroscience. This model consists of 4700 event-driven, rule-based neurons, wired according to anatomical data, and driven by both white-noise synaptic inputs and a sensory signal recorded from a rat thalamus. Its purpose is to explore the effects of cortical damage, along with the repair of this damage via a neuroprosthesis.
457. PyMUS: A Python based Motor Unit Simulator (Kim & Kim 2018)
PyMUS is a simulation software that allows for integrative investigations on the input-output processing of the motor unit system in a hierarchical manner from a single channel to the entire system behavior. Using PyMUS, a single motoneuron, muscle unit and motor unit can be separately simulated under a wide range of experimental input protocols.
458. Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003)
"... We examined the relationship between dendritic arborization and the coupling between somatic and dendritic action potential (AP) initiation sites in layer 5 (L5) neocortical pyramidal neurons. Coupling was defined as the relative reduction in threshold for initiation of a dendritic calcium AP due to a coincident back-propagating AP. Simulations based on reconstructions of biocytin-filled cells showed that addition of oblique branches of the main apical dendrite in close proximity to the soma (d < 140 um) increases the coupling between the apical and axosomatic AP initiation zones, whereas incorporation of distal branches decreases coupling. ... We conclude that variation in dendritic arborization may be a key determinant of variability in coupling (49+-17%; range 19-83%; n = 37) and is likely to outweigh the contribution made by variations in active membrane properties. Thus coincidence detection of inputs arriving from different cortical layers is strongly regulated by differences in dendritic arborization."
459. Pyramidal neuron conductances state and STDP (Delgado et al. 2010)
Neocortical neurons in vivo process each of their individual inputs in the context of ongoing synaptic background activity, produced by the thousands of presynaptic partners a typical neuron has. That background activity affects multiple aspects of neuronal and network function. However, its effect on the induction of spike-timing dependent plasticity (STDP) is not clear. Using the present biophysically-detailed computational model, it is not only able to replicate the conductance-dependent shunting of dendritic potentials (Delgado et al,2010), but show that synaptic background can truncate calcium dynamics within dendritic spines, in a way that affects potentiation more strongly than depression. This program uses a simplified layer 2/3 pyramidal neuron constructed in NEURON. It was similar to the model of Traub et al., J Neurophysiol. (2003), and consisted of a soma, an apical shaft, distal dendrites, five basal dendrites, an axon, and a single spine. The spine’s location was variable along the apical shaft (initial 50 &#956;m) and apical. The axon contained an axon hillock region, an initial segment, segments with myelin, and nodes of Ranvier, in order to have realistic action potential generation. For more information about the model see supplemental material, Delgado et al 2010.
460. Pyramidal Neuron Deep, Superficial; Aspiny, Stellate (Mainen and Sejnowski 1996)
This package contains compartmental models of four reconstructed neocortical neurons (layer 3 Aspiny, layer 4 Stellate, layer 3 and layer 5 Pyramidal neurons) with active dendritic currents using NEURON. Running this simulation demonstrates that an entire spectrum of firing patterns can be reproduced in this set of model neurons which share a common distribution of ion channels and differ only in their dendritic geometry. The reference paper is: Z. F. Mainen and T. J. Sejnowski (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382: 363-366. See also http://www.cnl.salk.edu/~zach/methods.html and http://www.cnl.salk.edu/~zach/ More info in readme.txt file below made visible by clicking on the patdemo folder and then on the readme.txt file.
461. Pyramidal Neuron Deep: Constrained by experiment (Dyhrfjeld-Johnsen et al. 2005)
"... As a practical demonstration of the use of CoCoDat we constructed a detailed computer model of an intrinsically bursting (IB) layer V pyramidal neuron from the rat barrel cortex supplementing experimental data (Schubert et al., 2001) with information extracted from the database. The pyramidal neuron morphology (Fig. 10B) was reconstructed from histological sections of a biocytin-stained IB neuron using the NeuroLucida software package..."
462. Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
This is a model network of prefrontal cortical microcircuit based primarily on rodent data. It includes 16 pyramidal model neurons, 2 fast spiking interneuron models, 1 regular spiking interneuron model and 1 irregular spiking interneuron model. The goal of the paper was to use this model network to determine the role of specific interneuron subtypes in persistent activity
463. Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001)
This package shows single-compartment models of different classes of cortical neurons, such as the "regular-spiking", "fast-spiking" and "bursting" (LTS) neurons. The mechanisms included are the Na+ and K+ currents for generating action potentials (INa, IKd), the T-type calcium current (ICaT), and a slow voltage-dependent K+ current (IM). See http://cns.fmed.ulaval.ca/alain_demos.html
464. Pyramidal neurons switch from integrators to resonators (Prescott et al. 2008)
During wakefulness, pyramidal neurons in the intact brain are bombarded by synaptic input that causes tonic depolarization, increased membrane conductance (i.e. shunting), and noisy fluctuations in membrane potential; by comparison, pyramidal neurons in acute slices typically experience little background input. Such differences in operating conditions can compromise extrapolation of in vitro data to explain neuronal operation in vivo. ... in slice experiments, we show that CA1 hippocampal pyramidal cells switch from integrators to resonators, i.e. from class 1 to class 2 excitability. The switch is explained by increased outward current contributed by the M-type potassium current IM ... Thus, even so-called “intrinsic” properties may differ qualitatively between in vitro and in vivo conditions.
465. Pyramidal neurons with mutated SCN2A gene (Nav1.2) (Ben-Shalom et al 2017)
Model of pyramidal neurons that either hyper or hypo excitable due to SCN2A mutations. Mutations are taken from patients with ASD or Epilepsy
466. Pyramidal neurons: IKHT offsets activation of IKLT to increase gain (Fernandez et al 2005)
This matlab model was supplied by Dr Fernandez. It provides the model specification for the below paper. The influence of a high threshold K current on low threshold K and Na currents (especially frequency-current relationships) are studied in the paper with both experiments and modeling. Please see the reference for more and details.
467. Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. In addition to detailed electrophysiological recordings and histological investigations of electrically coupled Golgi cells in the cerebellum, a detailed network model of these cells was created. The cell models are based on reconstructed Golgi cell morphologies and the active conductances are taken from an earlier abstract Golgi cell model (Solinas et al 2007, accession no. 112685). Our results show that gap junction coupling can sometimes be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input. The model is available as a neuroConstruct project and can executable scripts can be generated for the NEURON simulator.
468. Rat phrenic motor neuron (Amini et al 2004)
We have developed a model for the rat phrenic motor neuron (PMN) that robustly replicates many experimentally observed behaviors of PMNs in response to pharmacological, ionic, and electrical perturbations using a single set of parameters.
469. Rat subthalamic projection neuron (Gillies and Willshaw 2006)
A computational model of the rat subthalamic nucleus projection neuron is constructed using electrophysiological and morphological data and a restricted set of channel specifications. The model cell exhibits a wide range of electrophysiological behaviors characteristic of rat subthalamic neurons. It reveals that a key set of three channels play a primary role in distinguishing behaviors: a high-voltage-activated calcium channel (Cav 1.2.-1.3), a low-voltage-activated calcium channel (Cav 3.-), and a small current calcium-activated potassium channel (KCa 2.1-2.3). See paper for more and details.
470. Reconstructing cerebellar granule layer evoked LFP using convolution (ReConv) (Diwakar et al. 2011)
The model allows reconstruction of evoked local field potentials as seen in the cerebellar granular layer. The approach uses a detailed model of cerebellar granule neuron to generate data traces and then uses a "ReConv" or jittered repetitive convolution technique to reproduce post-synaptic local field potentials in the granular layer. The algorithm was used to generate both in vitro and in vivo evoked LFP and reflected the changes seen during LTP and LTD, when such changes were induced in the underlying neurons by modulating release probability of synapses and sodium channel regulated intrinsic excitability of the cells.
471. Recurrent discharge in a reduced model of cat spinal motoneuron (Balbi et al, 2013)
Following a distal stimulation of a motor fibre, only a fraction of spinal motoneurons are able to produce a re-excitation of the initial segment leading to an orthodromically conducted action potential, known as recurrent discharge. In order to show the reciprocal interplay of the axonal initial segment and the soma leading to recurrent discharge in detail, a reduced model of a cat spinal motoneuron was developed.
472. Regulation of a slow STG rhythm (Nadim et al 1998)
Frequency regulation of a slow rhythm by a fast periodic input. Nadim, F., Manor, Y., Nusbaum, M. P., Marder, E. (1998) J. Neurosci. 18: 5053-5067
473. Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010)
A dopaminergic (DA) neuron model with a morphologicaly realistic dendritic architecture. The model captures several salient features of DA neurons under different pharmacological manipulations and exhibits depolarization block for sufficiently high current pulses applied to the soma.
474. Regulation of motoneuron excitability by KCNQ/Kv7 modulators (Lombardo & Harrington 2016)
" ... Computer simulations confirmed that pharmacological enhancement of KCNQ/Kv7 channel (M current) activity decreases excitability and also suggested that the effects of inhibition of KCNQ/Kv7 channels on the excitability of spinal MNs do not depend on a direct effect in these neurons but likely on spinal cord synaptic partners. These results indicate that KCNQ/Kv7 channels have a fundamental role in the modulation of the excitability of spinal MNs acting both in these neurons and in their local presynaptic partners. ..."
475. Regulation of the firing pattern in dopamine neurons (Komendantov et al 2004)
Midbrain dopaminergic (DA) neurons in vivo exhibit two major firing patterns: single-spike firing and burst firing. The firing pattern expressed is dependent on both the intrinsic properties of the neurons and their excitatory and inhibitory synaptic inputs. Experimental data suggest that the activation of NMDA and GABAA receptors is crucial contributor to the initiation and suppression of burst firing, respectively, and that blocking calcium-activated potassium channels can facilitate burst firing. This multi-compartmental model of a DA neuron with a branching structure was developed and calibrated based on in vitro experimental data to explore the effects of different levels of activation of NMDA and GABAA receptors as well as the modulation of the SK current on the firing activity.
476. Rejuvenation model of dopamine neuron (Chan et al. 2007)
Model files for the paper C. Savio Chan, et al. 'Rejuvenation' protects neurons in mouse models of Parkinson's disease, Nature 447, 1081-1086(28 June 2007).
477. Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013)
We investigated the reliability of the timing of spikes in a spike train in a Morris-Lecar model with several extensions. A frozen Gaussian noise current, superimposed on a DC current, was injected. The neuron responded with spike trains that showed trial-to-trial variability. The reliability depends on the shape (steepness) of the current input versus spike frequency output curve. The model also allowed to study the contribution of three relevant ionic membrane currents to reliability: a T-type calcium current, a cation selective h-current and a calcium dependent potassium current in order to allow bursting, investigate the consequences of a more complex current-frequency relation and produce realistic firing rates.
478. Respiratory central pattern generator network in mammalian brainstem (Rubin et al. 2009)
This model is a reduced version of a spatially organized respiratory central pattern generation network consisting of four neuronal populations (pre-I, early-I, post-I, and aug-E). In this reduction, each population is represented by a single neuron, in an activity-based framework (which includes the persistent sodium current for the pre-I population). The model includes three sources of external drive and can produce several experimentally observed rhythms.
479. Respiratory control model with brainstem CPG and sensory feedback (Diekman, Thomas, and Wilson 2017)
This is a closed-loop respiratory control model incorporating a central pattern generator (CPG), the Butera-Rinzel-Smith (BRS) model, together with lung mechanics, oxygen handling, and chemosensory components. The closed-loop system exhibits bistability of bursting and tonic spiking. Bursting corresponds to coexistence of eupnea-like breathing, with normal minute ventilation and blood oxygen level. Tonic spiking corresponds to a tachypnea-like state, with pathologically reduced minute ventilation and critically low blood oxygen. In our paper, we use the closed-loop system to demonstrate robustness to changes in metabolic demand, spontaneous autoresuscitation in response to hypoxia, and the distinct mechanisms that underlie rhythmogenesis in the intact control circuit vs. the isolated, open-loop CPG.
480. Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008)
Neocortical neurons are classified by current–frequency relationship. This is a static description and it may be inadequate to interpret neuronal responses to time-varying stimuli. Theoretical studies (Brunel et al., 2001; Fourcaud-Trocmé et al. 2003; Fourcaud-Trocmé and Brunel 2005; Naundorf et al. 2005) suggested that single-cell dynamical response properties are necessary to interpret ensemble responses to fast input transients. Further, it was shown that input-noise linearizes and boosts the response bandwidth, and that the interplay between the barrage of noisy synaptic currents and the spike-initiation mechanisms determine the dynamical properties of the firing rate. In order to allow a reader to explore such simulations, we prepared a simple NEURON implementation of the experiments performed in Köndgen et al., 2008 (see also Fourcaud-Trocmé al. 2003; Fourcaud-Trocmé and Brunel 2005). In addition, we provide sample MATLAB routines for exploring the sandwich model proposed in Köndgen et al., 2008, employing a simple frequdency-domain filtering. The simulations and the MATLAB routines are based on the linear response properties of layer 5 pyramidal cells estimated by injecting a superposition of a small-amplitude sinusoidal wave and a background noise, as in Köndgen et al., 2008.
481. Retinal Ganglion Cell: I-Na,t (Benison et al 2001)
NEURON mod files for the Na current from the papers: (model) Benison G, Keizer J, Chalupa LM, Robinson DW. Modeling temporal behavior of postnatal cat retinal ganglion cells. J Theor Biol. 2001 210:187-99 and a reference from this paper: (experimental) Skaliora I, Scobey RP, Chalupa LM. Prenatal development of excitability in cat retinal ganglion cells: action potentials and sodium currents. J Neurosci 1993 13:313-23. See the readme.txt file below for more information.
482. Rhesus Monkey Layer 3 Pyramidal Neurons: Young vs aged PFC (Coskren et al. 2015)
Layer 3 (L3) pyramidal neurons in the lateral prefrontal cortex (LPFC) of rhesus monkeys exhibit dendritic regression, spine loss and increased action potential (AP) firing rates during normal aging. The relationship between these structural and functional alterations, if any, is unknown. Computational models using the digital reconstructions with Hodgkin-Huxley and AMPA channels allowed us to assess relationships between demonstrated age-related changes and to predict physiological changes that have not yet been tested empirically. Tuning passive parameters for each model predicted significantly higher membrane resistance (Rm) in aged versus young neurons. This Rm increase alone did not account for the empirically observed fI-curves, but coupling these Rm values with subtle differences in morphology and membrane capacitance Cm did. The predicted differences in passive parameters (or other parameters with similar effects) are mathematically plausible, but must be tested empirically.
483. Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016)
A stereotypical pyramidal neuron morphology with ion channel parameter combinations that reproduce firing patterns of one young and one aged rhesus monkey L3 PFC pyramidal neurons. Parameters were found through an automated optimization method.
484. Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
485. Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)
"Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420 –2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. ..."
486. Role of Ih in firing patterns of cold thermoreceptors (Orio et al., 2012)
" ... Here we investigated the role of Ih in cold-sensitive (CS) nerve endings, where cold sensory transduction actually takes place. Corneal CS nerve endings in mice show a rhythmic spiking activity at neutral skin temperature that switches to bursting mode when the temperature is lowered. ... Mathematical modeling shows that the firing phenotype of CS nerve endings from HCN1-/- mice can be reproduced by replacing HCN1 channels with the slower HCN2 channels rather than by abolishing Ih. We propose that Ih carried by HCN1 channels helps tune the frequency of the oscillation and the length of bursts underlying regular spiking in cold thermoreceptors, having important implications for neural coding of cold sensation. "
487. Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017)
Computational modeling showed that the size of the Axon Initial Segment (AIS), but not its position within the somatodendritic domain, is the major causal determinant of the tonic firing rate in the intact model, by virtue of the higher intrinsic frequency of the isolated AIS. Further mechanistic analysis of the relationship between neuronal morphology and firing rate showed that dopaminergic neurons function as a coupled oscillator whose frequency of discharge results from a compromise between AIS and somatodendritic oscillators.
488. Roles of I(A) and morphology in AP prop. in CA1 pyramidal cell dendrites (Acker and White 2007)
" ...Using conductance-based models of CA1 pyramidal cells, we show that underlying “traveling wave attractors” control action potential propagation in the apical dendrites. By computing these attractors, we dissect and quantify the effects of IA channels and dendritic morphology on bAP amplitudes. We find that non-uniform activation properties of IA can lead to backpropagation failure similar to that observed experimentally in these cells. ... "
489. S cell network (Moss et al 2005)
Excerpts from the abstract: S cells form a chain of electrically coupled neurons that extends the length of the leech CNS and plays a critical role in sensitization during whole-body shortening. ... Serotonin ... increasedAP latency across the electrical synapse, suggesting that serotonin reduced coupling between S cells. ... Serotonin modulated instantaneous AP frequency when APs were initiated in separate S cells and in a computational model of S cell activity following mechanosensory input. Thus, serotonergic modulation of S cell electrical synapses may contribute to changes in the pattern of activity in the S cell network. See paper for more.
490. Salamander retinal ganglian cells: morphology influences firing (Sheasby, Fohlmeister 1999)
Nerve impulse entrainment and other excitation and passive phenomena are analyzed for a morphologically diverse and exhaustive data set (n=57) of realistic (3-dimensional computer traced) soma-dendritic tree structures of ganglion cells in the tiger salamander (Ambystoma tigrinum) retina.
491. Salamander retinal ganglion cell: ion channels (Fohlmeister, Miller 1997)
A realistic five (5) channel spiking model reproduces the bursting behavior of tiger salamander ganglion cells in the retina. Please see the readme for more information.
492. Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016)
Python scripts for running NEURON simulations that model a layer V pyramidal cell with certain genetic variants implemented. The genes included are obtained from genome-wide association studies of schizophrenia.
493. Selective control of cortical axonal spikes by a slowly inactivating K+ current (Shu et al. 2007)
We discovered a low-threshold, slowly inactivating K+ current, containing Kv1.2 alpha subunits, in axon initial segment, playing a key role in the modulation of spike threshold and spike duration as well as the spike timing in prefrontal cortex layer V pyramidal cell of ferrets and rats. A kd.mod file implements this D current and put it in the axonal model: Neuron_Dcurrent.hoc. Run the model to see the gradual modulation effect over seconds on spike shape.
494. Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
" ... We present a large-scale network model with single and multi-compartmental Hodgkin–Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. ... The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian–Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures."
495. Serotonergic modulation of Aplysia sensory neurons (Baxter et al 1999)
The present study investigated how the modulation of these currents altered the spike duration and excitability of sensory neurons and examined the relative contributions of PKA- and PKC-mediated effects to the actions of 5-HT. A Hodgkin-Huxley type model was developed that described the ionic conductances in the somata of sensory neurons. The descriptions of these currents and their modulation were based largely on voltageclamp data from sensory neurons. Simulations were preformed with the program SNNAP (Simulator for Neural Networks and Action Potentials). The model was sufficient to replicate empirical data that describes the membrane currents, action potential waveform and excitability as well as their modulation by application of 5-HT, increased levels of adenosine cyclic monophosphate or application of active phorbol esters. The results provide several predictions that warrant additional experimental investigation and illustrate the importance of considering indirect as well as direct effects of modulatory agents on the modulation of membrane currents. See paper for more details.
496. Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
This work (published in "Timed synaptic inhibition shapes NMDA spikes, influencing local dendritic processing and global I/O properties of cortical neurons", Doron et al, Cell Reports, 2017), examines the effect of timed inhibition over dendritic NMDA spikes on L5PC (Based on Hay et al., 2011) and CA1 cell (Based on Grunditz et al. 2008 and Golding et al. 2001).
497. Short term plasticity of synapses onto V1 layer 2/3 pyramidal neuron (Varela et al 1997)
This archive contains 3 mod files for NEURON that implement the short term synaptic plasticity model described in Varela, J.A., Sen, K., Gibson, J., Fost, J., Abbott, L.R., and Nelson, S.B.. A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience 17:7926-7940, 1997. Contact ted.carnevale@yale.edu if you have questions about this implementation of the model.
498. Simple and accurate Diffusion Approximation algor. for stochastic ion channels (Orio & Soudry 2012)
" ... We derived the (Stochastic Differential Equations) SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable – allowing an easy, transparent and efficient (Diffusion Approximation) DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as (Markov Chains) MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used."
499. Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
"... In this work, we address the problem of understanding the cortical processing of color information with a possible mechanism of the development of the patchy distribution of color selectivity via computational modeling. ... Our model of the early visual system consists of multiple topographically-arranged layers of excitatory and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity between layers. Layers are arranged based on anatomy of early visual pathways, and include a retina, lateral geniculate nucleus, and layered neocortex. ... After training with natural images, the neurons display heightened sensitivity to specific colors. ..."
500. Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013)
" ... Here we demonstrate that biophysical models of channel noise can give rise to two kinds of recently discovered stochastic facilitation effects in a Hodgkin-Huxley-like model of auditory brainstem neurons. The first, known as slope-based stochastic resonance (SBSR), enables phasic neurons to emit action potentials that can encode the slope of inputs that vary slowly relative to key time constants in the model. The second, known as inverse stochastic resonance (ISR), occurs in tonically firing neurons when small levels of noise inhibit tonic firing and replace it with burstlike dynamics. ..." Preprint available at http://arxiv.org/abs/1311.2643
501. Simulation studies on mechanisms of levetiracetam-mediated inhibition of IK(DR) (Huang et al. 2009)
Levetiracetam (LEV) is an S-enantiomer pyrrolidone derivative with established antiepileptic efficacy in generalized epilepsy and partial epilepsy. However, its effects on ion currents and membrane potential remain largely unclear. In this study, we investigated the effect of LEV on differentiated NG108-15 neurons. ... Simulation studies in a modified Hodgkin-Huxley neuron and network unraveled that the reduction of slowly inactivating IK(DR) resulted in membrane depolarization accompanied by termination of the firing of action potentials in a stochastic manner. Therefore, the inhibitory effects on slowly inactivating IK(DR) (Kv3.1-encoded current) may constitute one of the underlying mechanisms through which LEV affects neuronal activity in vivo.
502. Simulation study of Andersen-Tawil syndrome (Sung et al 2006)
Patients with Andersen-Tawil syndrome (ATS) mostly have mutations on the KCNJ2 gene producing loss of function or dominant-negative suppression of the inward rectifier K(+) channel Kir2.1. However, clinical manifestations of ATS including dysmorphic features, periodic paralysis (hypo-, hyper-, or normokalemic), long QT, and ventricular arrhythmias (VA) are considerably variable. Using a modified dynamic Luo-Rudy simulation model of cardiac ventricular myocyte, we elucidate the mechanisms of VA in ATS. We adopted a kinetic model of KCNJ2 in which channel block by Mg(+2) and spermine was incorporated. In this study, we attempt to examine the effects of KCNJ2 mutations on the ventricular action potential (AP), single-channel Markovian models were reformulated and incorporated into the dynamic Luo-Rudy model for rapidly and slowly delayed rectifying K(+) currents and KCNJ2 channel. During pacing at 1.0 Hz with [K(+)]o at 5.4 mM, a stepwise 10% reduction of Kir2.1 channel conductance progressively prolonged the terminal repolarization phase of AP along with gradual depolarization of the resting membrane potential (RMP). At 90% reduction, early after- depolarizations (EADs) became inducible and RMP was depolarized to -55.0 mV (control: -90.1 mV) followed by emergence of spontaneous action potentials (SAP). Both EADs and SAP were facilitated by a decrease in [K(+)]o and suppressed by increase in [K(+)]o. beta-adrenergic stimulation enhanced delayed after-depolarizations (DADs) and could also facilitate EADs as well as SAP in the setting of low [K(+)]o and reduced Kir2.1 channel conductance. In conclusion, the spectrum of VA in ATS includes (1) triggered activity mediated by EADs and/or DADs, and (2) abnormal automaticity manifested as SAP. These VA can be aggravated by a decrease in [K(+)]o and beta-adrenergic stimulation, and may potentially induce torsades de pointes and cause sudden death. In patients with ATS, the hypokalemic form of periodic paralysis should have the highest propensity to VA especially during physical activities.
503. Simulations of oscillations in piriform cortex (Wilson & Bower 1992)
"1. A large-scale computer model of the piriform cortex was constructed on the basis of the known anatomic and physiological organization of this region. 2. The oscillatory field potential and electroencephalographic (EEG) activity generated by the model was compared with actual physiological results. The model was able to produce patterns of activity similar to those recorded physiologically in response to both weak and strong electrical shocks to the afferent input. The model also generated activity patterns similar to EEGs recorded in behaving animals. 3. ..."
504. Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)
A biophysical single compartment model of the dorsal lateral striatum medium spiny neuron is presented here. The model is an implementation then adaptation of a previously described model (Mahon et al. 2002). The model has been adapted to include NMDA and AMPA receptor models that have been fit to dorsal lateral striatal neurons. The receptor models allow for excitation by other neuron models.
505. Single E-I oscillating network with amplitude modulation (Avella Gonzalez et al. 2012)
"... Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with episodes of high amplitude (HAE) alternating with episodes of low amplitude (LAE). ... Here, we show that transitions between HAE and LAE in the alpha/beta frequency band occur in a generic neuronal network model consisting of interconnected inhibitory (I) and excitatory (E) cells that are externally driven by sustained depolarizing currents(cholinergic input) and trains of action potentials that activate excitatory synapses. In the model, action potentials onto inhibitory cells represent input from other brain areas and desynchronize network activity, being crucial for the emergence of amplitude fluctuations. ..."
506. Single neuron with ion concentrations to model anoxic depolarization (Zandt et al. 2011)
A minimal single neuron model, including changing ion concentrations and homeostasis mechanisms. It shows the sudden depolarization that occurs after prolonged anoxia/ischemia.
507. Site of impulse initiation in a neuron (Moore et al 1983)
Examines the effect of temperature, the taper of the axon hillock, and HH channel density on antidromic spike invasion into the soma and spike initiation under dendritic stimulation.
508. Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
The authors investigate the transition between sleep and awake states with intracellular recordings in cats and computational models. The model describes many essential features of slow wave sleep and activated states as well as the transition between them.
509. Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009)
Implemented with NEURON 5.9, four model neurons with varying excitability properties affect the spatiotemporal patterning of small world networks of homogeneous and heterogeneous cell population.
510. Sodium channel mutations causing generalized epilepsy with febrile seizures + (Barela et al. 2006)
A novel mutation, R859C, in the Nav1.1 sodium channel was identified in a 4-generation, 33-member Caucasian family with a clinical presentation consistent with GEFS+. The mutation neutralizes a positively charged arginine in the domain 2 S4 voltage sensor of the Nav1.1 channel Ą subunit. When the mutation was placed in the rat Nav1.1 channel and expressed in Xenopus oocytes, the mutant channel displayed a positive shift in the voltage-dependence of sodium channel activation, slower recovery from slow inactivation, and lower levels of current compared to the wild-type channel. Computational analysis suggests that neurons expressing the mutant channel have higher thresholds for firing a single action potential and for firing multiple action potentials, along with decreased repetitive firing. Therefore, this mutation should lead to decreased neuronal excitability, in contrast to most previous GEFS+ sodium channel mutations that have changes predicted to increase neuronal firing.
511. Sodium currents activate without a delay (Baranauskas and Martina 2006)
Hodgkin and Huxley established that sodium currents in the squid giant axons activate after a delay, which is explained by the model of a channel with three identical independent gates that all have to open before the channel can pass current (the HH model). It is assumed that this model can adequately describe the sodium current activation time course in all mammalian central neurons, although there is no experimental evidence to support such a conjecture. We performed high temporal resolution studies of sodium currents gating in three types of central neurons. ... These results can be explained by a model with two closed states and one open state. ... This model captures all major properties of the sodium current activation. In addition, the proposed model reproduces the observed action potential shape more accurately than the traditional HH model. See paper for more and details.
512. Software for teaching neurophysiology of neuronal circuits (Grisham et al. 2008)
"To circumvent the many problems in teaching neurophysiology as a “wet lab,” we developed SWIMMY, a virtual fish that swims by moving its virtual tail by means of a virtual neural circuit. ... Using SWIMMY, students (1) review the basics of neurophysiology, (2) identify the neurons in the circuit, (3) ascertain the neurons’ synaptic interconnections, (4) discover which cells generate the motor pattern of swimming, (5) discover how the rhythm is generated, and finally (6) use an animation that corresponds to the activity of the motoneurons to discover the behavioral effects produced by various lesions and explain them in terms of their neural underpinnings. ..."
513. Software for teaching the Hodgkin-Huxley model (Hernandez & Zurek 2013) (SENB written in NEURON hoc)
" ... The SENB software offers several advantages for teaching and learning electrophysiology. First, SENB offers ease and flexibility in determining the number of stimuli. Second, SENB allows immediate and simultaneous visualization, in the same window and time frame, of the evolution of the electrophysiological variables. Third, SENB calculates parameters such as time and space constants, stimuli frequency, cellular area and volume, sodium and potassium equilibrium potentials, and propagation velocity of the action potentials. ..."
514. Spatial summation of excitatory and inhibitory inputs in pyramidal neurons (Hao et al. 2010)
"... Based on realistic modeling and experiments in rat hippocampal slices, we derived a simple arithmetic rule for spatial summation of concurrent excitatory glutamatergic inputs (E) and inhibitory GABAergic inputs (I). The somatic response can be well approximated as the sum of the excitatory postsynaptic potential (EPSP), the inhibitory postsynaptic potential (IPSP), and a nonlinear term proportional to their product (k*EPSP*IPSP), where the coefficient k reflects the strength of shunting effect. ..."
515. Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
We explored dendritic plateau potentials in a biophysically detailed SPN model. We coupled the dendritic plateaus to different types of inhibitions (dendritic fast and slow inhibitions, perisomatic inhibition from FS interneurons , etc.) We found the inhibition provides precise control over the plateau potential, and thus the spiking output of SPNs.
516. Spike frequency adaptation in the LGMD (Peron and Gabbiani 2009)
This model is used in the referenced paper to demonstrate that a model of an SK-like calcium-sensitive potassium (KCa) conductance can replicate the spike frequency adaptation (SFA) of the locust lobula giant movement detector (LGMD) neuron. The model simulates current injection experiments with and without KCa block in the LGMD, as well as visual stimulation experiments with and without KCa block.
517. Spike Initiation in Neocortical Pyramidal Neurons (Mainen et al 1995)
This model reproduces figure 3A from the paper Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995). Please see the paper for detail whose full text is available at http://www.cnl.salk.edu/~zach/methods.html Email Zach Mainen for questions: mainen@cshl.org
518. Spike propagation and bouton activation in terminal arborizations (Luscher, Shiner 1990)
Action potential propagation in axons with bifurcations involving short collaterals with synaptic boutons has been simulated ... The architecture of the terminal arborizations has a profound effect on the activation pattern of synapses, suggesting that terminal arborizations not only distribute neural information to postsynaptic cells but may also be able to process neural information presynaptically. Please see paper for details.
519. Spike repolarization in axon collaterals (Foust et al. 2011)
Voltage sensing dye experiments and simulations characterize the location and re-polarizing function of Kv1 channels in cortical neurons. "... (the papers) results indicate that action potential-induced synaptic transmission may operate through a mix of analog–digital transmission owing to the properties of Kv1 channels in axon collaterals and presynaptic boutons."
520. Spike trains in Hodgkin–Huxley model and ISIs of acupuncture manipulations (Wang et al. 2008)
The Hodgkin-Huxley equations (HH) are parameterized by a number of parameters and shows a variety of qualitatively different behaviors depending on the parameter values. Under stimulation of an external periodic voltage, the ISIs (interspike intervals) of a HH model are investigated in this work, while the frequency of the voltage is taken as the controlling parameter. As well-known, the science of acupuncture and moxibustion is an important component of Traditional Chinese Medicine with a long history. Although there are a number of different acupuncture manipulations, the method for distinguishing them is rarely investigated. With the idea of ISI, we study the electrical signal time series at the spinal dorsal horn produced by three different acupuncture manipulations in Zusanli point and present an effective way to distinguish them.
521. Spikelet generation and AP initiation in a L5 neocortical pyr neuron (Michalikova et al. 2017) Fig 1
The article by Michalikova et al. (2017) explores the generation of spikelets in cortical pyramidal neurons. The model cell, adapted from Hu et al. (2009), is a layer V pyramidal neuron. The cell is stimulated by fluctuating synaptic inputs and generates somatic APs and spikelets in response. The spikelets are initiated as APs at the AIS that do not activate the soma.
522. Spikelet generation and AP initiation in a simplified pyr neuron (Michalikova et al. 2017) Fig 3
The article by Michalikova et al. (2017) explores the generation of spikelets in cortical pyramidal neurons. This package contains code for simulating the model with simplified morphology shown in Figs 3 and S2.
523. Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
"... The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. ..."
524. Spinal circuits controlling limb coordination and gaits in quadrupeds (Danner et al 2017)
Simulation of spinal neural networks involved in the central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
525. Spinal Motor Neuron (Dodge, Cooley 1973)
"The excitability of various regions of the spinal motorneuron can be specified by solving the partial differential equation of a nerve fiber whose diameter and membrane properties vary with distance. For our model geometrical factors for the myelinated axon, initial segment and cell body were derived from anatomical measurements, the dendritic tree was represented by its equivalent cylinder, and the current-voltage relations of the membrane were described by a modification of the Hodgkin-Huxley model that fits voltage-clamp data from the motorneuron. ..."
526. Spinal Motor Neuron (McIntyre et al 2002)
Simulation of peripheral nervous system (PNS) mylelinated axon. This model is described in detail in: McIntyre CC, Richardson AG, and Grill WM.(2002)
527. Spinal Motor Neuron: Na, K_A, and K_DR currents (Safronov, Vogel 1995)
NEURON mod files for the Na, K-A, and K-DR currents from the paper: Safronov, B.V. and Vogel,W. Single voltage-activated Na+ and K+ channels in the somata of rat motorneurons. Journal of Physiology 487.1:91-106 (1995). See the readme.txt file for more information.
528. Spine fusion and branching effects synaptic response (Rusakov et al 1996, 1997)
This compartmental model of a hippocampal granule cell has spinous synapses placed on the second-order dendrites. Changes in shape and connectivity of the spines usually does not effect the synaptic response of the cell unless active conductances are incorporated into the spine membrane (e.g. voltage-dependent Ca2+ channels). With active conductances, spines can generate spike-like events. We showed that changes like fusion and branching, or in fact any increase in the equivalent spine neck resistance, could trigger a dramatic increase in the spine's influence on the dendritic shaft potential.
529. Spontaneous firing caused by stochastic channel gating (Chow, White 1996)
NEURON implementation of model of stochastic channel gating, resulting in spontaneous firing. Qualitatively reproduces the phenomena described in the reference.
530. Spreading depression model for FHM3 with Nav1.1 mutation (Dahlem et al. 2014)
Familial hemiplegic migraine (FHM) is a rare subtype of migraine with aura. A mutation causing FHM type 3 (FHM3) has been identified in SCN1A encoding the Nav1.1 Na+ channel. This genetic defect affects the inactivation gate. The code describes an extended Hodgkin-Huxley framework with dynamic ion concentrations in a wilde-type and mutant form.
531. Squid axon (Hodgkin, Huxley 1952) (LabAXON)
The classic HH model of squid axon membrane implemented in LabAXON. Hodgkin, A.L., Huxley, A.F. (1952)
532. Squid axon (Hodgkin, Huxley 1952) (NEURON)
The classic HH model of squid axon membrane implemented in NEURON. Hodgkin, A.L., Huxley, A.F. (1952)
533. Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other)
An SBML (and related XPP and other formats) implementation of the classic HH paper is available in the BIOMODELS database. See far below for links.
534. Squid axon (Hodgkin, Huxley 1952) (SNNAP)
The classic HH model of squid axon membrane implemented in SNNAP. Hodgkin, A.L., Huxley, A.F. (1952)
535. Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language)
"... Previous work showed that magnetic electrical field-induced antinoceptive action is mediated by activation of capsaicin-sensitive sensory afferents. In this study, a modified Hodgkin-Huxley model, in which TRP-like current (I-TRP) was incorporated, was implemented to predict the firing behavior of action potentials (APs), as the model neuron was exposed to sinusoidal changes in externally-applied voltage. ... Our simulation results suggest that modulation of TRP-like channels functionally expressed in small-diameter peripheral sensory neurons should be an important mechanism through which it can contribute to the firing pattern of APs."
536. Squid axon: Bifurcation analysis of mode-locking (Lee & Kim 2006) (Gangal & Dar 2014)
The model was built with the purpose of finding mode lockings between the input sinusoidal current frequency and the output frequency. Phase plase plane analysis, spike statistics, mode locking formulation etc. can be done with the help of the model. Any additional functionality can be added as the base code return the correct action potential values.
537. State and location dependence of action potential metabolic cost (Hallermann et al., 2012)
With this model of a layer 5 pyramidal neuron the state and location dependence of the ATP usage and the metabolic efficiency of action potentials can be analyzed. Model parameters were constrained by direct subcellular recordings at dendritic, somatic and axonal compartments.
538. State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
A Markov model of sodium channels was developed that includes drug binding to fast inactivated states. This was incorporated into a model of the dentate gyrus to investigate the effects of anti-epileptic drugs on neuron and network properties.
539. State-dependent rhythmogenesis in a half-center locomotor CPG (Ausburn et al 2017)
"The spinal locomotor central pattern generator (CPG) generates rhythmic activity with alternating flexion and extension phases. This rhythmic pattern is likely to result from inhibitory interactions between neural populations representing flexor and extensor half-centers. However, it is unclear whether the flexor-extensor CPG has a quasi-symmetric organization with both half-centers critically involved in rhythm generation, features an asymmetric organization with flexor-driven rhythmogenesis, or comprises a pair of intrinsically rhythmic half-centers. There are experimental data that support each of the above concepts but appear to be inconsistent with the others. In this theoretical/modeling study, we present and analyze a CPG model architecture that can operate in different regimes consistent with the above three concepts depending on conditions, which are defined by external excitatory drives to CPG half-centers. We show that control of frequency and phase durations within each regime depends on network dynamics, defined by the regime-dependent expression of the half-centers' intrinsic rhythmic capabilities and the operating phase transition mechanisms (escape vs. release). Our study suggests state dependency in locomotor CPG operation and proposes explanations for seemingly contradictory experimental data."
540. STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
"... We use a conductance-based model of a CN neuron to study the effect of the regularity of Purkinje cell spiking on CN neuron activity. We find that increasing the irregularity of Purkinje cell activity accelerates the CN neuron spike rate and that the mechanism of this recoding of input irregularity as output spike rate depends on the number of Purkinje cells converging onto a CN neuron. ..."
541. STDP depends on dendritic synapse location (Letzkus et al. 2006)
This model was published in Letzkus, Kampa & Stuart (2006) J Neurosci 26(41):10420-9. The simulation creates several plots showing voltage and NMDA current and conductance changes at different apical dendritic locations in layer 5 pyramidal neurons during STDP induction protocols. Created by B. Kampa (2006).
542. STDP promotes synchrony of inhibitory networks in the presence of heterogeneity (Talathi et al 2008)
"Recently Haas et al. (J Neurophysiol 96: 3305–3313, 2006), observed a novel form of spike timing dependent plasticity (iSTDP) in GABAergic synaptic couplings in layer II of the entorhinal cortex. Depending on the relative timings of the presynaptic input at time tpre and the postsynaptic excitation at time tpost, the synapse is strengthened (delta_t = t(post) - t(pre) > 0) or weakened (delta_t < 0). The temporal dynamic range of the observed STDP rule was found to lie in the higher gamma frequency band (> or = 40 Hz), a frequency range important for several vital neuronal tasks. In this paper we study the function of this novel form of iSTDP in the synchronization of the inhibitory neuronal network. In particular we consider a network of two unidirectionally coupled interneurons (UCI) and two mutually coupled interneurons (MCI), in the presence of heterogeneity in the intrinsic firing rates of each coupled neuron. ..."
543. Stochastic 3D model of neonatal rat spinal motoneuron (Ostroumov 2007)
" ... Although existing models of motoneurons have indicated the distributed role of certain conductances in regulating firing, it is unclear how the spatial distribution of certain currents is ultimately shaping motoneuron output. Thus, it would be helpful to build a bridge between histological and electrophysiological data. The present report is based on the construction of a 3D motoneuron model based on available parameters applicable to the neonatal spinal cord. ..."
544. Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013)
" ... In single Purkinje cells, spontaneous and synaptically evoked dendritic calcium bursts come in a variety of shapes with a variable number of spikes. The mechanisms causing this variability have never been investigated thoroughly. In this study, a detailed computational model employing novel simulation routines is applied to identify the roles that stochastic ion channels, spatial arrangements of ion channels and stochastic intracellular calcium have towards producing calcium burst variability. … Our findings suggest that stochastic intracellular calcium mechanisms play a crucial role in dendritic calcium spike generation and are, therefore, an essential consideration in studies of neuronal excitability and plasticity."
545. Stochastic ion channels and neuronal morphology (Cannon et al. 2010)
"... We introduce and validate new computational tools that enable efficient generation and simulation of models containing stochastic ion channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. ..." The code is downloadable and more information is available at <a href="http://www.psics.org/">http://www.psics.org/</a>
546. Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
We are investigating how dopaminergic modulation of single channels can be combined to make the D1R possitive MSN more excitable. We also connect multiple channels to substrates of a dopamine induced subcellular cascade to highlight that the classical pathway is too slow to explain DA induced kinetics in the subsecond range (Howe and Dombeck, 2016. doi: 10.1038/nature18942)
547. Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)
This study investigates the mechanisms that are affected in the striatal network after dopamine depletion and identifies potential therapeutic targets to restore normal activity.
548. Striatal Output Neuron (Mahon, Deniau, Charpier, Delord 2000)
Striatal output neurons (SONs) integrate glutamatergic synaptic inputs originating from the cerebral cortex. In vivo electrophysiological data have shown that a prior depolarization of SONs induced a short-term (1 sec)increase in their membrane excitability, which facilitated the ability of corticostriatal synaptic potentials to induce firing. Here we propose, using a computational model of SONs, that the use-dependent, short-term increase in the responsiveness of SONs mainly results from the slow kinetics of a voltage-dependent, slowly inactivating potassium A-current. This mechanism confers on SONs a form of intrinsic short-term memory that optimizes the synaptic input–output relationship as a function of their past activation.
549. Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013)
This entry includes tools for generating and analyzing network structure, and for running the neuronal network simulations on them.
550. Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
Architecturally realistic neocortical model using seven classes of excitatory and inhibitory single compartment Hodgkin-Huxley cells. Wiring is adapted to minicolumn hypothesis and incorporates visual and neocortical data. Simulation demonstrates spontaneous bursting onset and cessation, and activity can be altered with external electric field.
551. Study of augmented Rubin and Terman 2004 deep brain stim. model in Parkinsons (Pascual et al. 2006)
" ... The model by Rubin and Terman [31] represents one of the most comprehensive and biologically plausible models of DBS published recently. We examined the validity of the model, replicated its simulations and tested its robustness. While our simulations partially reproduced the results presented by Rubin and Terman [31], several issues were raised including the high complexity of the model in its non simplified form, the lack of robustness of the model with respect to small perturbations, the nonrealistic representation of the thalamus and the absence of time delays. Computational models are indeed necessary, but they may not be sufficient in their current forms to explain the effect of chronic electrical stimulation on the activity of the basal ganglia (BG) network in PD."
552. Submyelin Potassium accumulation in Subthalamic neuron (STN) axons (Bellinger et al. 2008)
"To better understand the direct effects of DBS (Deep brain stimulation) on central neurons, a computational model of a myelinated axon has been constructed which includes the effects of K+ accumulation within the peri-axonal space. Using best estimates of anatomic and electrogenic model parameters for in vivo STN axons, the model predicts a functional block along the axon due to K+ accumulation in the submyelin space. ... These results suggest that therapeutic DBS of the STN likely results in a functional block for many STN axons, although a subset of STN axons may also be activated at the stimulating frequency. "
553. Sympathetic neuron (Wheeler et al 2004)
This study shows how synaptic convergence and plasticity can interact to generate synaptic gain in autonomic ganglia and thereby enhance homeostatic control. Using a conductance-based computational model of an idealized sympathetic neuron, we simulated the postganglionic response to noisy patterns of presynaptic activity and found that a threefold amplification in postsynaptic spike output can arise in ganglia, depending on the number and strength of nicotinic synapses, the presynaptic firing rate, the extent of presynaptic facilitation, and the expression of muscarinic and peptidergic excitation. See references for details.
554. Sympathetic Preganglionic Neurone (Briant et al. 2014)
A model of a sympathetic preganglionic neurone of muscle vasoconstrictor-type.
555. Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
The computational model of in vivo sharp-wave ripples with place cell replay. Excitatory post-synaptic potentials at dendrites gate antidromic spikes arriving from the axonal collateral, and thus determine when the soma and the main axon fire. The model allows synchronous replay of pyramidal cells during sharp-wave ripple event, and the replay is possible in both forward and reverse directions.
556. Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
"... We sought to measure how the activity of the network alters information flow from inputs to output patterns. Information handling by the network reflected the degree of internal connectivity. ... With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. ... At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing."
557. Synaptic integration by MEC neurons (Justus et al. 2017)
Pyramidal cells, stellate cells and fast-spiking interneurons receive running speed dependent glutamatergic input from septo-entorhinal projections. These models simulate the integration of this input by the different MEC celltypes.
558. Synaptic integration in a model of granule cells (Gabbiani et al 1994)
We have developed a compartmental model of a turtle cerebellar granule cell consisting of 13 compartments that represent the soma and 4 dendrites. We used this model to investigate the synaptic integration of mossy fiber inputs in granule cells. See reference or abstract at PubMed link below for more information.
559. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
Simulations used in the paper. Voltage responses to current injections in different tuft locations; NMDA and calcium spike generation. Summation of multiple input distribution.
560. Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
"We describe a new molecular mechanism of dopamine-induced membrane protein modulation that can tune neuronal oscillation frequency to attention related gamma rhythm. This mechanism is based on the unique ability of D4 dopamine receptors (D4R) to carry out phospholipid methylation (PLM) that may affect the kinetics of ion channels. We show that by deceasing the inertia of the delayed rectifier potassium channel, a transition to 40 Hz oscillations can be achieved. ..."
561. Synchrony by synapse location (McTavish et al. 2012)
This model considers synchrony between mitral cells induced via shared granule cell interneurons while taking into account the spatial constraints of the system. In particular, since inhibitory inputs decay passively along the lateral dendrites, this model demonstrates that an optimal arrangement of the inhibitory synapses will be near the cell bodies of the relevant mitral cells.
562. Synergistic inhibitory action of oxcarbazepine on INa and IK (Huang et al. 2008)
"Oxcarbazepine (OXC), one of the newer anti-epileptic drugs, has been demonstrating its efficacy on wide-spectrum neuropsychiatric disorders. ... With the aid of patch-clamp technology, we first investigated the effects of OXC on ion currents in NG108-15 neuronal cells differentiated with cyclic AMP. We found OXC ... caused a reversible reduction in the amplitude of voltage-gated Na+ current (INa) ... and produce(d) a significant prolongation in the recovery of INa inactivation. ... Moreover, OXC could suppress the amplitude of delayed rectifier K+ current (IK(DR)), with no effect on M-type K+ current (IK(M)). ... Furthermore, the simulations, based on hippocampal pyramidal neurons (Pinsky-Rinzel model) and a network of the Hodgkin-Huxley model, were analysed to investigate the effect of OXC on action potentials. Taken together, our results suggest that the synergistic blocking effects on INa and IK(DR) may contribute to the underlying mechanisms through which OXC affects neuronal function in vivo."
563. Synthesis of spatial tuning functions from theta cell spike trains (Welday et al., 2011)
A single compartment model reproduces the firing rate maps of place, grid, and boundary cells by receiving inhibitory inputs from theta cells. The theta cell spike trains are modulated by the rat's movement velocity in such a way that phase interference among their burst pattern creates spatial envelope function which simulate the firing rate maps.
564. Temperature-Dependent Pyloric Pacemaker Kernel (Caplan JS et al., 2014)
"... Here we demonstrate that biophysical models of channel noise can give rise to two kinds of recently discovered stochastic facilitation effects in a Hodgkin-Huxley-like model of auditory brainstem neurons. The first, known as slope-based stochastic resonance (SBSR), enables phasic neurons to emit action potentials that can encode the slope of inputs that vary slowly relative to key time constants in the model. The second, known as inverse stochastic resonance (ISR), occurs in tonically firing neurons when small levels of noise inhibit tonic firing and replace it with burstlike dynamics. ... our results show that possible associated computational benefits may occur due to channel noise in neurons of the auditory brainstem. ... "
565. Temperature-Sensitive conduction at axon branch points (Westerfield et al 1978)
Propagation of impulses through branching regions of squid axons was examined experimentally and with computer simulations. The ratio of postbranch/prebranch diameters at which propagation failed was very sensitive to temperature.
566. Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003)
"... Recent investigations in primary visual (V1) cortical neurons have demonstrated that adaptation to prolonged changes in stimulus contrast is mediated in part through intrinsic ionic currents, a Ca2+ activated K+ current (IKCa) and especially a Na+ activated K+ current (IKNa). The present study was designed to test the hypothesis that the activation of adaptation ionic currents may provide a cellular mechanism for temporal decorrelation in V1. A conductance-based neuron model was simulated, which included an IKCa and an IKNa. We show that the model neuron reproduces the adaptive behavior of V1 neurons in response to high contrast inputs. ...". See paper for details and more.
567. Thalamic interneuron multicompartment model (Zhu et al. 1999)
This is an attempt to recreate a set of simulations originally performed in 1994 under NEURON version 3 and last tested in 1999. When I ran it now it did not behave exactly the same as previously which I suspect is due to some minor mod file changes on my side rather than due to any differences among versions. After playing around with the parameters a little bit I was able to get something that looks generally like a physiological trace in J Neurophysiol, 81:702--711, 1999, fig. 8b top trace. This sad preface is simply offered in order to encourage anyone who is interested in this model to make and post fixes. I'm happy to help out. Simulation by JJ Zhu To run nrnivmodl nrngui.hoc
568. Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)
The authors use an in vitro cell model of a single acutely isolated thalamic neuron in the NEURON simulation environment to address and discuss questions in an undergraduate course. Topics covered include passive electrical properties, composition of action potentials, trains of action potentials, multicompartment modeling, and research topics. The paper includes detailed instructions on how to run the simulations in the appendix.
569. Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996)
The experiments and modeling reported in this paper show how intrinsic bursting properties of RE cells may be explained by dendritic calcium currents.
570. Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
"In Parkinson’s disease, neurons of the internal segment of the globus pallidus (GPi) display the low-frequency tremor-related oscillations. These oscillatory activities are transmitted to the thalamic relay nuclei. Computer models of the interacting thalamocortical (TC) and thalamic reticular (RE) neurons were used to explore how the TC-RE network processes the low-frequency oscillations of the GPi neurons. ..."
571. Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
NEURON model of oscillations in networks of thalamocortical and thalamic reticular neurons in the ferret. (more applications for a model quantitatively identical to previous DLGN model; updated for NEURON v4 and above)
572. Thalamocortical augmenting response (Bazhenov et al 1998)
In the cortical model, augmenting responses were more powerful in the "input" layer compared with those in the "output" layer. Cortical stimulation of the network model produced augmenting responses in cortical neurons in distant cortical areas through corticothalamocortical loops and low-threshold intrathalamic augmentation. ... The predictions of the model were compared with in vivo recordings from neurons in cortical area 4 and thalamic ventrolateral nucleus of anesthetized cats. The known intrinsic properties of thalamic cells and thalamocortical interconnections can account for the basic properties of cortical augmenting responses. See reference for details. NEURON implementation note: cortical SU cells are getting slightly too little stimulation - reason unknown.
573. Thalamocortical model of spike and wave seizures (Suffczynski et al. 2004)
SIMULINK macroscopic model of transitions between normal (spindle) activity and spike and wave (SW) discharges in the thalamocortical network. The model exhibits bistability properties and stochastic fluctuations present in the network may flip the system between the two operational states. The predictions of the model were compared with real EEG data in rats and humans. A possibility to abort an ictal state by a single counter stimulus is suggested by the model.
574. The origin of different spike and wave-like events (Hall et al 2017)
Acute In vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike and wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalised and focal, and manifest across the entire age spectrum. They are heterogeneous in terms of their severity, symptom burden and apparent anatomical origin (thalamic, neocortical or both), but any relationship between this heterogeneity and underlying pathology remains elusive. Here we demonstrate that physiological delta frequency rhythms act as an effective substrate to permit modelling of SpW of cortical origin and may help to address this issue. ..."
575. The role of glutamate in neuronal ion homeostasis: spreading depolarization (Hubel et al 2017)
This model includes ion concentration dynamics (sodium, potassium, chloride) inside and outside the neuron, the exchange of ions with glia and blood vessels, volume dynamics of neuron, glia, and extracellular space, glutamate homeostasis involving release by neuron and uptake by both neuron and glia. Spreading depolarization is used as a case study.
576. Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
"... The present study concerns a neurobiologically based computational model of the emergence of theta phase precession in which the responses of a single model CA3 pyramidal cell are examined in the context of stimulation by realistic afferent spike trains including those of place cells in entorhinal cortex, dentate gyrus, and other CA3 pyramidal cells. Spike-timing dependent plasticity in the model CA3 pyramidal cell leads to a spatially correlated associational synaptic drive that subsequently creates a spatially asymmetric expansion of the model cell’s place field. ... Through selective manipulations of the model it is possible to decompose theta phase precession in CA3 into the separate contributing factors of inheritance from upstream afferents in the dentate gyrus and entorhinal cortex, the interaction of synaptically controlled increasing afferent drive with phasic inhibition, and the theta phase difference between dentate gyrus granule cell and CA3 pyramidal cell activity."
577. Tight junction model of CNS myelinated axons (Devaux and Gow 2008)
Two models are included: 1) a myelinated axon is represented by an equivalent circuit with a double cable design but includes a tight junction in parallel with the myelin membrane RC circuit (called double cable model, DCM). 2) a myelinated axon is represented by an equivalent circuit with a double cable design but includes a tight junction in series with the myelin RC circuit (called tight junction model, TJM). These models have been used to simulate data from compound action potentials measured in mouse optic nerve from Claudin 11-null mice in Fig. 6 of: Devaux, J.J. & Gow, A. (2008) Tight Junctions Potentiate The Insulative Properties Of Small CNS Myelinated Axons. J Cell Biol 183, 909-921.
578. Tonic firing in substantia gelatinosa neurons (Melnick et al 2004)
Ionic conductances underlying excitability in tonically firing neurons (TFNs) from substantia gelatinosa (SG) were studied by the patch-clamp method in rat spinal cord slices. ... Suppression of Ca2+ and KCA currents ... did not abolish the basic pattern of tonic firing, indicating that it was generated by voltage-gated Na+ and K+ currents. ... on the basis of present data, we created a model of TFN and showed that Na+ and KDR currents are sufficient to generate a basic pattern of tonic firing. It is concluded that the balanced contribution of all ionic conductances described here is important for generation and modulation of tonic firing in SG neurons. See paper for more and details.
579. Tonic neuron in spinal lamina I: prolongation of subthreshold depol. (Prescott and De Koninck 2005)
Model demonstrates mechanism whereby two kinetically distinct inward currents act synergistically to prolong subthreshold depolarization. The important currents are a persistent Na current (with fast kinetics) and a persistent Ca current (with slower kinetics). Model also includes a slow K current and transient Ca current, in addition to standard HH currents. Model parameters are set to values used in Fig. 8A. Simulation shows prolonged depolarizations in response to two brief stimuli.
580. Touch Sensory Cells (T Cells) of the Leech (Cataldo et al. 2004) (Scuri et al. 2007)
Bursts of spikes in leech T cells produce an AHP, which results from activation of a Na+/K+ pump and a Ca2+-dependent K+ current. Activity-dependent increases in the AHP are believed to induce conduction block of spikes in several regions of the neuron, which in turn, may decrease presynaptic invasion of spikes and thereby decrease transmitter release. To explore this possibility, we used the neurosimulator SNNAP to develop a multi-compartmental model of the T cell. Each compartment was modeled as an equivalent electrical circuit, in which some currents were regulated by intracellular Ca2+ and Na+. The membrane model consisted of a membrane capacitance (Cm), for which we used the value 1 uF/cm2, in parallel with two inward currents (Na+ and Ca2+), two K+ currents, a leak current and pump current. The model incorporated empirical data that describe the geometry of the cell and activity-dependent changes of the AHP (see paper for details). Simulations indicated that at some branching points, activity-dependent increases of the AHP reduced the number of spikes transmitted from the minor receptive field to the soma and beyond. These results suggest that the AHP can regulate spike conduction within the presynaptic arborizations of the cell and could in principle contribute to the synaptic depression that is correlated with increases in the AHP.
581. Transfer properties of Neuronal Dendrites (Korogod et al 1998)
The somatopetal current transfer was studied in mathematical models of a reconstructed brainstem motoneuron with tonically activated excitatory synaptic inputs uniformly distributed over the dendritic arborization. See paper and below readme.txt for more information.
582. TRPM8-dependent dynamic response in cold thermoreceptors (Olivares et al. 2015)
This model reproduces the dynamic response of cold thermoreceptors, transiently changing the firing rate upon heating or cooling. It also displays the 'static' or adapted firing patterns observed in these receptors.
583. TTX-R Na+ current effect on cell response (Herzog et al 2001)
"Small dorsal root ganglion (DRG) neurons, which include nociceptors, express multiple voltage-gated sodium currents. In addition to a classical fast inactivating tetrodotoxin-sensitive (TTX-S) sodium current, many of these cells express a TTX-resistant (TTX-R) sodium current that activates near -70 mV and is persistent at negative potentials. To investigate the possible contributions of this TTX-R persistent (TTX-RP) current to neuronal excitability, we carried out computer simulations using the Neuron program with TTX-S and -RP currents, fit by the Hodgkin-Huxley model, that closely matched the currents recorded from small DRG neurons. ..." See paper for more and details.
584. TTX-R Na+ current effect on cell response (Herzog et al 2001) (MATLAB)
"Small dorsal root ganglion (DRG) neurons, which include nociceptors, express multiple voltage-gated sodium currents. In addition to a classical fast inactivating tetrodotoxin-sensitive (TTX-S) sodium current, many of these cells express a TTX-resistant (TTX-R) sodium current that activates near -70 mV and is persistent at negative potentials. To investigate the possible contributions of this TTX-R persistent (TTX-RP) current to neuronal excitability, we carried out computer simulations using the Neuron program with TTX-S and -RP currents, fit by the Hodgkin-Huxley model, that closely matched the currents recorded from small DRG neurons. ..." See paper for more and details.
585. Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
This is a model of the visual cortex of freshwater turtles that is based upon the known anatomy and physiology of individual neurons. The model was published in three papers (Nenadic et al., 2003; Wang et al., 2005; Wang et al., 2006), which should be consulted for full details on its construction. The model has also been used in several papers (Robbins and Senseman, 2004; Du et al., 2005; Du et al., 2006). It is implemented in GENESIS (Bower and Beeman, 1998).
586. Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
" ...Loss of tonic neuromodulatory excitation, mediated by nicotinic acetylcholine or serotonin (5HT3A) receptors, of 5HT3-immunopositive interneurons caused an increase in amplitude and slowing of the delta rhythm until each period became the "wave" component of the spike and wave discharge. As with the normal delta rhythm, the wave of a spike and wave discharge originated in cortical layer 5. In contrast, the "spike" component of the spike and wave discharge originated from a relative failure of fast inhibition in layers 2/3-switching pyramidal cell action potential outputs from single, sparse spiking during delta rhythms to brief, intense burst spiking, phase-locked to the field spike. The mechanisms underlying this loss of superficial layer fast inhibition, and a concomitant increase in slow inhibition, appeared to be precipitated by a loss of neuropeptide Y (NPY)-mediated local circuit inhibition and a subsequent increase in vasoactive intestinal peptide (VIP)-mediated disinhibition. Blockade of NPY Y1 receptors was sufficient to generate spike and wave discharges, whereas blockade of VIP receptors almost completely abolished this form of epileptiform activity. These data suggest that aberrant, activity-dependent neuropeptide corelease can have catastrophic effects on neocortical dynamics."
587. Using Strahler`s analysis to reduce realistic models (Marasco et al, 2013)
Building on our previous work (Marasco et al., (2012)), we present a general reduction method based on Strahler's analysis of neuron morphologies. We show that, without any fitting or tuning procedures, it is possible to map any morphologically and biophysically accurate neuron model into an equivalent reduced version. Using this method for Purkinje cells, we demonstrate how run times can be reduced up to 200-fold, while accurately taking into account the effects of arbitrarily located and activated synaptic inputs.
588. Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)
A mathematical model of the membrane action potential of the mammalian ventricular cell is introduced. The model is based, whenever possible, on recent single-cell and single-channel data and incorporates the possibility of changing extracellular potassium concentration [K]o. ... The results are consistent with recent experimental observations, and the model simulations relate these phenomena to the underlying ionic channel kinetics. See paper for more and details.
589. Ventricular cell model (Luo Rudy dynamic model) (Luo Rudy 1994) used in (Wang et al 2006) (XPP)
A mathematical model of the membrane action potential of the mammalian ventricular cell introduced in Luo, Rudy 1991 and used in Wang et al 2006 is made available here in XPP. The model is based, whenever possible, on recent single-cell and single-channel data and incorporates the possibility of changing extracellular potassium concentration [K]o. ... The results are consistent with recent experimental observations, and the model simulations relate these phenomena to the underlying ionic channel kinetics. See papers for more and details.
590. Visual Cortex Neurons: Dendritic computations (Archie, Mel 2000)
Neuron and C program files from Archie, K.A. and Mel, B.W. A model of intradendritic computation of binocular disparity. Nature Neuroscience 3:54-63, 2000 The original files for this model are located at the web site http://www-lnc.usc.edu/~karchie/synmap
591. Vomeronasal sensory neuron (Shimazaki et al 2006)
NEURON model files from the papers: Shimazaki et al, Chem. Senses, epub ahead of print (2006) Electrophysiological properties and modeling of murine vomeronasal sensory neurons in acute slice preparations. The model reproduces quantitatively the experimentally observed firing rates of these neurons under a wide range of input currents.
592. VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
In our model of a midbrain VTA dopamine neuron, we show that the decay kinetics of the A-type potassium current can control the timing of rebound action potentials.
593. Xenopus Myelinated Neuron (Frankenhaeuser, Huxley 1964)
Frankenhaeuser, B. and Huxley, A. F. (1964), The action potential in the myelinated nerve fiber of Xenopus Laevis as computed on the basis of voltage clamp data. J. Physiol. 171: 302-315. See README file for more information.
594. Zebrafish Mauthner-cell model (Watanabe et al 2017)
The NEURON model files encode the channel generator and firing simulator for simulating development and differentiation of the Mauthner cell (M-cell) excitability in zebrafish. The channel generator enables us to generate arbitrary Na+ and K+ channels by changing parameters of a Hodgkin-Huxley model under emulation of two-electrode voltage-clamp recordings in Xenopus oocyte system. The firing simulator simulates current-clamp recordings to generate firing patterns of the model M-cell, which are implemented with arbitrary-generated basic Na+ and K+ conductances and low-threshold K+ channels Kv7.4/KCNQ4 and sole Kv1.1 or Kv1.1 coexpressed with Kvbeta2.
595. Zonisamide-induced inhibition of the firing of APs in hippocampal neurons (Huang et al. 2007)
Zonisamide (ZNS), a synthetic benzisoxazole derivative, has been used as an alternative choice in the treatment of epilepsy with a better efficacy and safety profile. However, little is known regarding the mechanism of ZNS actions on ion currents in neurons. We thus investigated its effect on ion currents in differentiated hippocampal 19-7 cells. The ZNS (30 uM) reversibly increased the amplitude of K+ outward currents and paxilline (1 uM) was effective in suppressing ZNS-induced increase of K+ outward currents. In inside-out configuration, ZNS (30 uM) applied to the intracellular face of the membrane did not alter single-channel conductance; however, it did enhance the activity of large-conductance Ca2+-activated K+ (BKCa) channels primarily by decreasing mean closed time. The EC50 value for ZNS-stimulated BKCa channels was 34 uM. This drug caused a left shift in the activation curve of BKCa channels with no change in the gating charge of these channels. ZNS at a concentration greater than 100 uM also reduced the amplitude of A-type K+ current in these cells. A simulation modeling based on hippocampal CA3 pyramidal neurons (Pinsky-Rinzel model) was also analyzed to investigate the inhibitory effect of ZNS on the firing of simulated action potentials. Taken together, this study suggests that in hippocampal neurons, during the exposure to ZNS, the ZNS-mediated effects on BKCa channels and IA could be one of the ionic mechanisms through which it affects neuronal excitability.

Re-display model names without descriptions