Models that contain the Neuron : Neostriatum spiny direct pathway neuron

Re-display model names without descriptions
    Models   Description
1. A basal ganglia model of aberrant learning (Ursino et al. 2018)
A comprehensive, biologically inspired neurocomputational model of action selection in the Basal Ganglia allows simulation of dopamine induced aberrant learning in Parkinsonian subjects. In particular, the model simulates the Alternate Finger Tapping motor task as an indicator of bradykinesia.
2. A contracting model of the basal ganglia (Girard et al. 2008)
Basal ganglia model : selection processes between channels, dynamics controlled by contraction analysis, rate-coding model of neurons based on locally projected dynamical systems (lPDS).
3. A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity (Nakano et al. 2010)
A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32), as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA), protein phosphatase 2A (PP2A), and the phosphorylation site at threonine 75 of DARPP-32 (Thr75) served as the major switch for inducing LTD and LTP. The present model elucidated the mechanisms involved in bidirectional regulation of corticostriatal synapses and will allow for further exploration into causes and therapies for dysfunctions such as drug addiction."
4. Biologically Constrained Basal Ganglia model (BCBG model) (Lienard, Girard 2014)
We studied the physiology and function of the basal ganglia through the design of mean-field models of the whole basal ganglia. The parameterizations are optimized with multi-objective evolutionary algorithm to respect best a collection of numerous anatomical data and electrophysiological data. The main outcomes of our study are: • The strength of the GPe to GPi/SNr connection does not support opposed activities in the GPe and GPi/SNr. • STN and MSN target more the GPe than the GPi/SNr. • Selection arises from the structure of the basal ganglia, without properly segregated direct and indirect pathways and without specific inputs from pyramidal tract neurons of the cortex. Selection is enhanced when the projection from GPe to GPi/SNr has a diffuse pattern.
5. Calcium influx during striatal upstates (Evans et al. 2013)
"... To investigate the mechanisms that underlie the relationship between calcium and AP timing, we have developed a realistic biophysical model of a medium spiny neuron (MSN). ... Using this model, we found that either the slow inactivation of dendritic sodium channels (NaSI) or the calcium inactivation of voltage-gated calcium channels (CDI) can cause high calcium corresponding to early APs and lower calcium corresponding to later APs. We found that only CDI can account for the experimental observation that sensitivity to AP timing is dependent on NMDA receptors. Additional simulations demonstrated a mechanism by which MSNs can dynamically modulate their sensitivity to AP timing and show that sensitivity to specifically timed pre- and postsynaptic pairings (as in spike timing-dependent plasticity protocols) is altered by the timing of the pairing within the upstate. …"
6. Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up and down states.
7. Cortico-striatal plasticity in medium spiny neurons (Gurney et al 2015)
In the associated paper (Gurney et al, PLoS Biology, 2015) we presented a computational framework that addresses several issues in cortico-striatal plasticity including spike timing, reward timing, dopamine level, and dopamine receptor type. Thus, we derived a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then showed this model produces the predicted activity changes necessary for learning and extinction in an operant task. Moreover, we showed the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. The model was validated in a wider setting of action selection in basal ganglia, showing how it could account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. The code supplied here allows reproduction of the proposed process of learning in medium spiny neurons, giving the results of Figure 7 of the paper.
8. Dopamine activation of signaling pathways in a medium spiny projection neuron (Oliveira et al. 2012)
Large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines to investigate whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. Simulations, implemented in NeuroRD, show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase.
9. Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009)
We extended Izhikevich's reduced model of the striatal medium spiny neuron (MSN) to account for dopaminergic modulation of its intrinsic ion channels and synaptic inputs. We tuned our D1 and D2 receptor MSN models using data from a recent (Moyer et al, 2007) large-scale compartmental model. Our new models capture the input-output relationships for both current injection and spiking input with remarkable accuracy, despite the order of magnitude decrease in system size. They also capture the paired pulse facilitation shown by MSNs. Our dopamine models predict that synaptic effects dominate intrinsic effects for all levels of D1 and D2 receptor activation. Our analytical work on these models predicts that the MSN is never bistable. Nonetheless, these MSN models can produce a spontaneously bimodal membrane potential similar to that recently observed in vitro following application of NMDA agonists. We demonstrate that this bimodality is created by modelling the agonist effects as slow, irregular and massive jumps in NMDA conductance and, rather than a form of bistability, is due to the voltage-dependent blockade of NMDA receptors
10. Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005)
See README file for all info on how to run models under different tasks and simulated Parkinson's and medication conditions.
11. Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)
The endocannabinoid (eCB) system is considered involved in synaptic depression. Recent reports have also linked eCBs to synaptic potentiation. However it is not known how eCB signaling may support such bidirectionality. To question the mechanisms of this phenomena in spike-timing dependent plasticity (STDP) at corticostriatal synapses, we combined electrophysiology experiments with biophysical modeling. We demonstrate that STDP is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Therefore, just like neurotransmitters glutamate or GABA, eCB form a bidirectional system.
12. Gq coupled signaling pathways involved in striatal synaptic plasticity (Kim et al. 2013)
Model of Gq coupled signaling pathways underlying synaptic plasticity in striatal medium spiny projection neurons. Reactions and diffusion are implemented stochastically in a dendrite with one or more diffusionally coupled spines. Simulations demonstrate that theta burst stimulation, which produces LTP, increases the ratio of PKC:2AG as compared to 20 Hz stimulation, which produces LTD.
13. Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
"We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. ... "
14. Model of DARPP-32 phosphorylation in striatal medium spiny neurons (Lindskog et al. 2006)
The work describes a model of how transient calcium and dopamine inputs might affect phosphorylation of DARPP-32 in the medium spiny neurons in the striatum. The model is relevant for understanding both the "three-factor rule" for synaptic plasticity in corticostriatal synapses, and also for relating reinforcement learning theories to biology.
15. Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
"… We present a new event-driven algorithm to synchronize different neuronal models, which decreases computational time and avoids superfluous synchronizations. The algorithm is implemented in the TimeScales framework. We demonstrate its use by simulating a new multiscale model of the Medium Spiny Neuron of the Neostriatum. The model comprises over a thousand dendritic spines, where the electrical model interacts with the respective instances of a biochemical model. Our results show that a multiscale model is able to exhibit changes of synaptic plasticity as a result of the interaction between electrical and biochemical signaling. …"
16. NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
Effect of NMDA subunit on spike timing dependent plasticity.
17. Roles of subthalamic nucleus and DBS in reinforcement conflict-based decision making (Frank 2006)
Deep brain stimulation (DBS) of the subthalamic nucleus dramatically improves the motor symptoms of Parkinson's disease, but causes cognitive side effects such as impulsivity. This model from Frank (2006) simulates the role of the subthalamic nucleus (STN) within the basal ganglia circuitry in decision making. The STN dynamically modulates network decision thresholds in proportion to decision conflict. The STN ``hold your horses'' signal adaptively allows the system more time to settle on the best choice when multiple options are valid. The model also replicates effects in Parkinson's patients on and off DBS in experiments designed to test the model (Frank et al, 2007).
18. Signaling pathways In D1R containing striatal spiny projection neurons (Blackwell et al 2018)
We implemented a mechanistic model of signaling pathways activated by dopamine D1 receptors, acetylcholine receptors, and glutamate. We use our novel, computationally efficient simulator, NeuroRD, to simulate stochastic interactions both within and between dendritic spines. Results show that the combined activity of several key plasticity molecules correctly predicts the occurrence of either LTP, LTD or no plasticity for numerous experimental protocols.
19. Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)
A biophysical single compartment model of the dorsal lateral striatum medium spiny neuron is presented here. The model is an implementation then adaptation of a previously described model (Mahon et al. 2002). The model has been adapted to include NMDA and AMPA receptor models that have been fit to dorsal lateral striatal neurons. The receptor models allow for excitation by other neuron models.
20. Spiking neuron model of the basal ganglia (Humphries et al 2006)
A spiking neuron model of the basal ganglia (BG) circuit (striatum, STN, GP, SNr). Includes: parallel anatomical channels; tonic dopamine; dopamine receptors in striatum, STN, and GP; burst-firing in STN; GABAa, AMPA, and NMDA currents; effects of synaptic location. Model demonstrates selection and switching of input signals. Replicates experimental data on changes in slow-wave (<1 Hz) and gamma-band oscillations within BG nuclei following lesions and pharmacological manipulations.
21. Spiny neuron model with dopamine-induced bistability (Gruber et al 2003)
These files implement a model of dopaminergic modulation of voltage-gated currents (called kir2 and caL in the original paper). See spinycell.html for details of usage and implementation. For questions about this implementation, contact Ted Carnevale (ted.carnevale@yale.edu)
22. Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
We are investigating how dopaminergic modulation of single channels can be combined to make the D1R possitive MSN more excitable. We also connect multiple channels to substrates of a dopamine induced subcellular cascade to highlight that the classical pathway is too slow to explain DA induced kinetics in the subsecond range (Howe and Dombeck, 2016. doi: 10.1038/nature18942)
23. Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)
This study investigates the mechanisms that are affected in the striatal network after dopamine depletion and identifies potential therapeutic targets to restore normal activity.
24. Striatal Output Neuron (Mahon, Deniau, Charpier, Delord 2000)
Striatal output neurons (SONs) integrate glutamatergic synaptic inputs originating from the cerebral cortex. In vivo electrophysiological data have shown that a prior depolarization of SONs induced a short-term (1 sec)increase in their membrane excitability, which facilitated the ability of corticostriatal synaptic potentials to induce firing. Here we propose, using a computational model of SONs, that the use-dependent, short-term increase in the responsiveness of SONs mainly results from the slow kinetics of a voltage-dependent, slowly inactivating potassium A-current. This mechanism confers on SONs a form of intrinsic short-term memory that optimizes the synaptic input–output relationship as a function of their past activation.
25. Synchronicity of fast-spiking interneurons balances medium-spiny neurons (Damodaran et al. 2014)
This study investigates the role of feedforward and feedback inhibition in maintaining the balance between D1 and D2 MSNs of the striatum. The synchronized firing of FSIs are found to be critical in this mechanism and specifically the gap junction connections between FSIs.

Re-display model names without descriptions