Models that contain the Implementer : Antic, Srdjan [antic at]

Re-display model names without descriptions
    Models   Description
1.  A multiphysics neuron model for cellular volume dynamics (Lee et al. 2011)
This paper introduces a novel neuron model, where the cell volume is a time-varying variable and multiple physical principles are combined to build governing equations. Using this model, we analyzed neuronal volume responses during excitation, which elucidated the waveforms of fast intrinsic optical signals observed experimentally across the literature. In addition, we analyzed volume responses on a longer time scale with repetitive stimulation to study the characteristics of slow cell swelling.
2.  AP initiation and propagation in type II cochlear ganglion cell (Hossain et al 2005)
The model of type II cochlear ganglion cell was based on the immunostaining of the mouse auditory pathway. Specific antibodies were used to map the distribution of voltage-dependent sodium channels along the two unmyelinated axon-like processes of the bipolar ganglion cells. Three distinct hot spots were detected. A high density of sodium channels was present over the entire trajectory of sensory endings beneath the outer hair cells (the most distal portion of the peripheral axon). The other two hot spots were localized in the initial segments of both of the axons that flank the unmyelinated bipolar ganglion cell bodies. A biophysical model indicates that all three hot spots might play important roles in action potential initiation and propagation. For instance, the hot spot in the receptor segment is important for transforming the receptor potentials into a full blown action potential (Supplemental Fig. 1). The hot spots in the two paraganglionic axon initial segments are there to ensure the successful propagation of action potentials from the peripheral to the central axon through the cell body. The Readme.txt file provides step by step instructions on how to recreate Figures 6 and 7 of Hossain et al., 2005 paper.

Re-display model names without descriptions