Models that contain the Model Concept : Heart disease

(Heart diseases are illnesses caused by abnormalities either of the heart or of the circulation of blood or both.)
Re-display model names without descriptions
    Models   Description
1.  A cardiac cell simulator (Puglisi and Bers 2001), applied to the QT interval (Busjahn et al 2004)
"LabHEART is an easy to use program that simulates the cardiac action potential, calcium transient and ionic currents. Key parameters such as ionic concentration, stimulus waveform and channel conductance can easily be changed by a click on an icon or dragging a slider. It is a powerfull tool for teaching and researching cardiac electrophysiology."
2.  A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004)
The Hund-Rudy dynamic (HRd) model is based on data from the canine epicardial ventricular myocyte. Rate-dependent phenomena associated with ion channel kinetics, action potential properties and Ca2+ handling are simulated by the model. See paper for more and details.
3.  Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004)
A mathematical model of the membrane action potential of the mammalian ventricular cell is introduced. The model is based, whenever possible, on recent single-cell and single-channel data and incorporates the possibility of changing extracellular potassium concentration [K]o. The fast sodium current, INa, is characterized by fast upstroke velocity (Vmax = 400 V/sec) and slow recovery from inactivation. The time-independent potassium current, IK1, includes a negative-slope phase and displays significant crossover phenomenon as [K]o is varied. The time-dependent potassium current, IK, shows only a minimal degree of crossover. A novel potassium current that activates at plateau potentials is included in the model. The simulated action potential duplicates the experimentally observed effects of changes in [K]o on action potential duration and rest potential. See papers for more and details.
4.  Cardiac Atrial Cell (Courtemanche et al 1998)
Marc Courtemanche, Rafael J. Ramirez, and Stanley Nattel. Ionic mechanisms underlying human atrial action potential properties insights from a mathematical model Am J Physiol Heart Circ Physiol 1998 275: H301-H321. The implementation of this model in NEURON was contributed by Ingemar Jacobson.
5.  Cardiac Atrial Cell (Courtemanche et al 1998) (C++)
The mechanisms underlying many important properties of the human atrial action potential (AP) are poorly understood. Using specific formulations of the K+, Na+, and Ca2+ currents based on data recorded from human atrial myocytes, along with representations of pump, exchange, and background currents, we developed a mathematical model of the AP. The model AP resembles APs recorded from human atrial samples and responds to rate changes, L-type Ca2+ current blockade, Na+/Ca2+ exchanger inhibition, and variations in transient outward current amplitude in a fashion similar to experimental recordings. Rate-dependent adaptation of AP duration, an important determinant of susceptibility to atrial fibrillation, was attributable to incomplete L-type Ca2+ current recovery from inactivation and incomplete delayed rectifier current deactivation at rapid rates. Experimental observations of variable AP morphology could be accounted for by changes in transient outward current density, as suggested experimentally. We conclude that this mathematical model of the human atrial AP reproduces a variety of observed AP behaviors and provides insights into the mechanisms of clinically important AP properties.
6.  Consequences of HERG mutations in the long QT syndrome (Clancy, Rudy 2001)
This study demonstrates which mutations can prolong APD sufficiently to generate early afterdepolarizations (EADs), which may trigger life-threatening arrhythmias. The severity of the phenotype is shown to depend on the specific kinetic changes and how they affect I(Kr) during the time course of the action potential. See paper for more and details.
7.  Efffect of propofol on potassium current in cardiac H9c2 cells (Liu et al. 2008)
"... The effects of propofol, an intravenous anesthetic agent with a distinct chemical structure, on ion currents of differentiated clonal cardiac (H9c2) cells were investigated in this study. Propofol ... suppressed the amplitude of delayed rectifier K(+) current (I(K(DR))) in a concentration-dependent manner with an IC(50) value of 36 muM. ... Propofol (30 muM) had no effect on erg-mediated K(+) current in these cells; however, it suppressed L-type Ca(2+) current (I(Ca,L)) of cardiac and skeletal types to a similar extent. ... Numerical simulations of I(K(DR)) based on a Markovian model reproduce the experimental results and show that propofol-induced blockade of I(K(DR)) is associated with an decrease in forward rate of the activation process and an increase in transitional rate into the inactivated state. ..."
8.  HERG K+ channels spike-frequency adaptation (Chiesa et al 1997)
Spike frequency adaptation has contributions from the IHERG current (encoded by the human eag-related gene (HERG); Warmke & Ganetzky, 1994), which develops with slow kinetics during depolarization and contributes to the repolarization of the long action potentials typically present in the heart. IHERG is one of the delayed rectifier currents (IK(r)) of the heart, and HERG mutations are associated with one of the cardiac arrhythmia LQT syndromes (LQT2). See paper for more and details.
9.  Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
We found that HCN2 and HCN4 channels expressed in oocytes from the frog Xenopus laevis do not display the activation kinetic changes that we (previously) observed in spHCN and HCN1. However, HCN2 and HCN4 channels display changes in their tail currents, suggesting that these channels also undergo mode shifts and that the conformational changes underlying the mode shifts are due to conserved aspects of HCN channels. With computer modelling, we show that in channels with relatively slow opening kinetics and fast mode-shift transitions, such as HCN2 and HCN4 channels, the mode shift effects are not readily observable, except in the tail kinetics. Computer simulations of sino-atrial node action potentials suggest that the HCN2 channel, together with the HCN1 channel, are important regulators of the heart firing frequency and that the mode shift is an important property to prevent arrhythmic firing. We conclude that although all HCN channels appear to undergo mode shifts – and thus may serve to prevent arrhythmic firing – it is mainly observable in ionic currents from HCN channels with faster kinetics. See papers for more and details.
10.  INa and IKv4.3 heterogeneity in canine LV myocytes (Flaim et al 2006)
"The roles of sustained components of INa and IKv43 in shaping the action potentials (AP) of myocytes isolated from the canine left ventricle (LV) have not been studied in detail. Here we investigate the hypothesis that these two currents can contribute substantially to heterogeneity of early repolarization and arrhythmic risk.... The resulting simulations illustrate ways in which KChIP2- and Ca2+- dependent control of IKv43 can result in a sustained outward current that can neutralize INaL in a rate- and myocyte subtype-dependent manner. Both these currents appear to play significant roles in modulating AP duration and rate dependence in midmyocardial myocytes. ... By design, these models allow upward integration into organ models or may be used as a basis for further investigations into cellular heterogeneities." See paper for more and details.
11.  Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007)
From Zhu and Clancy: "... Here we employ theoretical simulations to examine the effects of a Timothy Syndrome (TS) mutation in the L-type Ca2+ channel on cardiac dynamics over multiple scales, from a gene mutation to protein, cell, tissue, and finally the ECG, to connect a defective Ca2+ channel to arrhythmia susceptibility. ..."
12.  Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000)
(1999) We present a model of the canine midmyocardial ventricular action potential and Ca2+ transient. The model is used to estimate the degree of functional upregulation and downregulation of Na/Ca exchanger protein and sarcoplasmic reticulum Ca ATPase in heart failure using data obtained from 2 different experimental protocols. (2000): A model of canine I:(to1) (the Ca(2+)-independent transient outward current) is formulated as the combination of Kv4.3 and Kv1.4 currents and is incorporated into an existing canine ventricular myocyte model. Simulations demonstrate strong coupling between L-type Ca(2+) current and I:(Kv4.3) and predict a bimodal relationship between I:(Kv4.3) density and APD whereby perturbations in I:(Kv4.3) density may produce either prolongation or shortening of APD, depending on baseline I:(to1) current level. See each paper for more and details.
13.  Kv4.3, Kv1.4 encoded K(+) channel in heart cells (Greenstein et al 2000) (XPP)
A model of canine I:(to1) (the Ca(2+)-independent transient outward current) is formulated as the combination of Kv4.3 and Kv1.4 currents and is incorporated into an existing canine ventricular myocyte model. Simulations demonstrate strong coupling between L-type Ca(2+) current and I:(Kv4.3) and predict a bimodal relationship between I:(Kv4.3) density and APD whereby perturbations in I:(Kv4.3) density may produce either prolongation or shortening of APD, depending on baseline I:(to1) current level. The model files were submitted by: Dr. Sheng-Nan Wu, Dr. Ruey J. Sung, Ya-Jean Wang and Jiun-Shian Wu e-mail: snwu@mail.ncku.edu.tw
14.  Markovian model for cardiac sodium channel (Clancy, Rudy 2002)
Complex physiological interactions determine the functional consequences of gene abnormalities and make mechanistic interpretation of phenotypes extremely difficult. A recent example is a single mutation in the C terminus of the cardiac Na(+) channel, 1795insD. The mutation causes two distinct clinical syndromes, long QT (LQT) and Brugada, leading to life-threatening cardiac arrhythmias. Coexistence of these syndromes is seemingly paradoxical; LQT is associated with enhanced Na(+) channel function, and Brugada with reduced function. Using a computational approach, we demonstrate that the 1795insD mutation exerts variable effects depending on the myocardial substrate. We develop Markov models of the wild-type and 1795insD cardiac Na(+) channels. See reference for more and details. The model files were submitted by: Dr. Jiun-Shian Wu, Dr. Sheng-Nan Wu, Dr. Ruey J. Sung, Han-Dong Chang.
15.  Markovian model for single-channel recordings of Ik_1 in ventricular cells (Matsuoka et al 2003)
The interaction between many currents in a cardiac ventricular model are examined in this paper. One of the main contributions come from a current called IK_1. An XPP version of this model was supplied by Hsieng-Jung Lai, Jiun-Shian Wu, Sheng-Nan Wu, Ruey J. Sung, Han-Dong Chang. Please see paper and model for more and details.
16.  Model of arrhythmias in a cardiac cells network (Casaleggio et al. 2014)
" ... Here we explore the possible processes leading to the occasional onset and termination of the (usually) non-fatal arrhythmias widely observed in the heart. Using a computational model of a two-dimensional network of cardiac cells, we tested the hypothesis that an ischemia alters the properties of the gap junctions inside the ischemic area. ... In conclusion, our model strongly supports the hypothesis that non-fatal arrhythmias can develop from post-ischemic alteration of the electrical connectivity in a relatively small area of the cardiac cell network, and suggests experimentally testable predictions on their possible treatments."
17.  Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005)
Detailed Markov models of IKs (the slow delayed rectifier K+ current) and its alpha-subunit KCNQ1 were developed. The model is compared to experiment in the paper. The role of IKs in disease and drug treatments is elucidated (the prevention of excessive action potential prolongation and development of arrhythmogenic early afterdepolarizations). See paper for more and details.
18.  Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) (XPP)
Detailed Markov model of IKs (the slow delayed rectifier K+ current) is supplied here in XPP. The model is compared to experiment in the paper. The role of IKs in disease and drug treatments is elucidated (the prevention of excessive action potential prolongation and development of arrhythmogenic early afterdepolarizations). See also modeldb accession number 55748 code and reference for more and details. This XPP version of the model reproduces Figure 3C in the paper by default. These model files were submitted by: Dr. Sheng-Nan Wu, Han-Dong Chang, Jiun-Shian Wu Department of Physiology National Cheng Kung University Medical College
19.  Simulation study of Andersen-Tawil syndrome (Sung et al 2006)
Patients with Andersen-Tawil syndrome (ATS) mostly have mutations on the KCNJ2 gene producing loss of function or dominant-negative suppression of the inward rectifier K(+) channel Kir2.1. However, clinical manifestations of ATS including dysmorphic features, periodic paralysis (hypo-, hyper-, or normokalemic), long QT, and ventricular arrhythmias (VA) are considerably variable. Using a modified dynamic Luo-Rudy simulation model of cardiac ventricular myocyte, we elucidate the mechanisms of VA in ATS. We adopted a kinetic model of KCNJ2 in which channel block by Mg(+2) and spermine was incorporated. In this study, we attempt to examine the effects of KCNJ2 mutations on the ventricular action potential (AP), single-channel Markovian models were reformulated and incorporated into the dynamic Luo-Rudy model for rapidly and slowly delayed rectifying K(+) currents and KCNJ2 channel. During pacing at 1.0 Hz with [K(+)]o at 5.4 mM, a stepwise 10% reduction of Kir2.1 channel conductance progressively prolonged the terminal repolarization phase of AP along with gradual depolarization of the resting membrane potential (RMP). At 90% reduction, early after- depolarizations (EADs) became inducible and RMP was depolarized to -55.0 mV (control: -90.1 mV) followed by emergence of spontaneous action potentials (SAP). Both EADs and SAP were facilitated by a decrease in [K(+)]o and suppressed by increase in [K(+)]o. beta-adrenergic stimulation enhanced delayed after-depolarizations (DADs) and could also facilitate EADs as well as SAP in the setting of low [K(+)]o and reduced Kir2.1 channel conductance. In conclusion, the spectrum of VA in ATS includes (1) triggered activity mediated by EADs and/or DADs, and (2) abnormal automaticity manifested as SAP. These VA can be aggravated by a decrease in [K(+)]o and beta-adrenergic stimulation, and may potentially induce torsades de pointes and cause sudden death. In patients with ATS, the hypokalemic form of periodic paralysis should have the highest propensity to VA especially during physical activities.
20.  Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)
A mathematical model of the membrane action potential of the mammalian ventricular cell is introduced. The model is based, whenever possible, on recent single-cell and single-channel data and incorporates the possibility of changing extracellular potassium concentration [K]o. ... The results are consistent with recent experimental observations, and the model simulations relate these phenomena to the underlying ionic channel kinetics. See paper for more and details.

Re-display model names without descriptions