Models that contain the Implementer : Wu, Jiun-Shian [coolneon at]

Re-display model names without descriptions
    Models   Description
1.  Allosteric gating of K channels (Horrigan et al 1999)
Calcium sensitive large-conductance K channel conductance is controlled by both cytoplasmic calcium and membrane potential. Experimental data obtained by the inside out patch method can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. See paper for more and details.
2.  Ca(2+) oscillations based on Ca-induced Ca-release (Dupont et al 1991)
We consider a simple, minimal model for signal-induced Ca2+ oscillations based on Ca(2+)-induced Ca2+ release. The model takes into account the existence of two pools of intracellular Ca2+, namely, one sensitive to inositol 1,4,5 trisphosphate (InsP3) whose synthesis is elicited by the stimulus, and one insensitive to InsP3. See paper for more and details.
3.  Consequences of HERG mutations in the long QT syndrome (Clancy, Rudy 2001)
This study demonstrates which mutations can prolong APD sufficiently to generate early afterdepolarizations (EADs), which may trigger life-threatening arrhythmias. The severity of the phenotype is shown to depend on the specific kinetic changes and how they affect I(Kr) during the time course of the action potential. See paper for more and details.
4.  HERG K+ channels spike-frequency adaptation (Chiesa et al 1997)
Spike frequency adaptation has contributions from the IHERG current (encoded by the human eag-related gene (HERG); Warmke & Ganetzky, 1994), which develops with slow kinetics during depolarization and contributes to the repolarization of the long action potentials typically present in the heart. IHERG is one of the delayed rectifier currents (IK(r)) of the heart, and HERG mutations are associated with one of the cardiac arrhythmia LQT syndromes (LQT2). See paper for more and details.
5.  Kv4.3, Kv1.4 encoded K(+) channel in heart cells (Greenstein et al 2000) (XPP)
A model of canine I:(to1) (the Ca(2+)-independent transient outward current) is formulated as the combination of Kv4.3 and Kv1.4 currents and is incorporated into an existing canine ventricular myocyte model. Simulations demonstrate strong coupling between L-type Ca(2+) current and I:(Kv4.3) and predict a bimodal relationship between I:(Kv4.3) density and APD whereby perturbations in I:(Kv4.3) density may produce either prolongation or shortening of APD, depending on baseline I:(to1) current level. The model files were submitted by: Dr. Sheng-Nan Wu, Dr. Ruey J. Sung, Ya-Jean Wang and Jiun-Shian Wu e-mail:
6.  Markovian model for cardiac sodium channel (Clancy, Rudy 2002)
Complex physiological interactions determine the functional consequences of gene abnormalities and make mechanistic interpretation of phenotypes extremely difficult. A recent example is a single mutation in the C terminus of the cardiac Na(+) channel, 1795insD. The mutation causes two distinct clinical syndromes, long QT (LQT) and Brugada, leading to life-threatening cardiac arrhythmias. Coexistence of these syndromes is seemingly paradoxical; LQT is associated with enhanced Na(+) channel function, and Brugada with reduced function. Using a computational approach, we demonstrate that the 1795insD mutation exerts variable effects depending on the myocardial substrate. We develop Markov models of the wild-type and 1795insD cardiac Na(+) channels. See reference for more and details. The model files were submitted by: Dr. Jiun-Shian Wu, Dr. Sheng-Nan Wu, Dr. Ruey J. Sung, Han-Dong Chang.
7.  Markovian model for single-channel recordings of Ik_1 in ventricular cells (Matsuoka et al 2003)
The interaction between many currents in a cardiac ventricular model are examined in this paper. One of the main contributions come from a current called IK_1. An XPP version of this model was supplied by Hsieng-Jung Lai, Jiun-Shian Wu, Sheng-Nan Wu, Ruey J. Sung, Han-Dong Chang. Please see paper and model for more and details.
8.  Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) (XPP)
Detailed Markov model of IKs (the slow delayed rectifier K+ current) is supplied here in XPP. The model is compared to experiment in the paper. The role of IKs in disease and drug treatments is elucidated (the prevention of excessive action potential prolongation and development of arrhythmogenic early afterdepolarizations). See also modeldb accession number 55748 code and reference for more and details. This XPP version of the model reproduces Figure 3C in the paper by default. These model files were submitted by: Dr. Sheng-Nan Wu, Han-Dong Chang, Jiun-Shian Wu Department of Physiology National Cheng Kung University Medical College

Re-display model names without descriptions