Models that contain the Cell : Pituitary cell

Re-display model names without descriptions
    Models   Description
1.  A model for pituitary GH(3) lactotroph (Wu and Chang 2005)
The ATP-sensitive K(+) (K(ATP)) channels are composed of sulfonylurea receptor and inwardly rectifying K(+) channel (Kir6.2) subunit. These channels are regulated by intracellular ADP/ATP ratio and play a role in cellular metabolism. ... The objective of this study was to determine whether Diethyl pyrocarbonate (DEPC) modifies K(ATP)-channel activity in pituitary GH(3) cells. ... Simulation studies also demonstrated that the increased conductance of K(ATP)-channels used to mimic DEPC actions reduced the frequency of spontaneous action potentials and fluctuation of intracellular Ca(2+). The results indicate that chemical modification with DEPC enhances K(ATP)-channel activity and influences functional activities of pituitary GH(3) cells. See paper for more and details.
2.  Endothelin action on pituitary latotrophs (Bertram et al. 2006)
Endothelin (ET-1, -2, and -3 designate three genes which produce different endothelin isopeptides) is a prolactin inhibiting substance of hypothalmic origin. ET-1 binding is part of at least four G protein signaling pathways in lactotrophs. The sequence of events in these pathways following the presentation of nano- and pico-molar concentrations of ET-1 is modeled in the paper.
3.  Low dose of dopamine may stimulate prolactin secretion by increasing K currents (Tabak et al. 2006)
".. We considered the fast K+ currents flowing through large-conductance BK channels and through A-type channels. We developed a minimal lactotroph model to investigate the effects of these two currents. Both IBK and IA could transform the electrical pattern of activity from spiking to bursting, but through distinct mechanisms. IBK always increased the intracellular Ca2+ concentration, while IA could either increase or decrease it. Thus, the stimulatory effects of DA could be mediated by a fast K+ conductance which converts tonically spiking cells to bursters. In addition, the study illustrates that a heterogeneous distribution of fast K+ conductances could cause heterogeneous lactotroph firing patterns."
4.  Mixed mode oscillations as a mechanism for pseudo-plateau bursting (Vo et al. 2010)
"We combine bifurcation analysis with the theory of canard-induced mixed mode oscillations to investigate the dynamics of a novel form of bursting. This bursting oscillation, which arises from a model of the electrical activity of a pituitary cell, is characterized by small impulses or spikes riding on top of an elevated voltage plateau. ..."
5.  Oxytocin and VIP involvement in prolactin secretion (Egli et al. 2004,2006, Bertram et al. 2006)
"Prolactin (PRL) is secreted from lactotrophs of the anterior pituitary gland of rats in a unique pattern in response to uterine cervical stimulation (CS) during mating. Surges of PRL secretion occur in response to relief from hypothalamic dopaminergic inhibition and stimulation by hypothalamic releasing neurohormones. In this study, we characterized the role of oxytocin (OT) in this system and the involvement of vasoactive intestinal polypeptide (VIP) from the suprachiasmatic nucleus (SCN) in controlling OT and PRL secretion of CS rats. ... OT measurements of serial blood samples obtained from ovariectomized (OVX) CS rats displayed a prominent increase at the time of the afternoon PRL peak. The injection of VIP antisense oligonucleotides into the SCN abolished the afternoon increase of OT and PRL in CS-OVX animals. These findings suggest that VIP from the SCN contributes to the regulation of OT and PRL secretion in CS rats. We propose that in CS rats the regulatory mechanism(s) for PRL secretion comprise coordinated action of neuroendocrine dopaminergic and OT cells, both governed by the daily rhythm of VIP-ergic output from the SCN. This hypothesis is illustrated with a mathematical model."
6.  The dynamics underlying pseudo-plateau bursting in a pituitary cell model (Teka et al. 2011)
" ... pseudo-plateau bursts, are unlike bursts studied mathematically in neurons (plateau bursting) and the standard fast-slow analysis used for plateau bursting is of limited use. Using an alternative fast-slow analysis, with one fast and two slow variables, we show that pseudo-plateau bursting is a canard-induced mixed mode oscillation. ..." See paper for other results.
7.  The relationship between two fast/slow analysis techniques for bursting oscill. (Teka et al. 2012)
"Bursting oscillations in excitable systems reflect multi-timescale dynamics. These oscillations have often been studied in mathematical models by splitting the equations into fast and slow subsystems. Typically, one treats the slow variables as parameters of the fast subsystem and studies the bifurcation structure of this subsystem. This has key features such as a z-curve (stationary branch) and a Hopf bifurcation that gives rise to a branch of periodic spiking solutions. In models of bursting in pituitary cells, we have recently used a different approach that focuses on the dynamics of the slow subsystem. Characteristic features of this approach are folded node singularities and a critical manifold. … We find that the z-curve and Hopf bifurcation of the twofast/ one-slow decomposition are closely related to the voltage nullcline and folded node singularity of the one-fast/two-slow decomposition, respectively. They become identical in the double singular limit in which voltage is infinitely fast and calcium is infinitely slow."
8.  Understanding how fast activating K+ channels promote bursting in pituitary cells (Vo et al 2014)
"... Experimental observations have shown ... that fast-activating voltage- and calcium-dependent potassium (BK) current tends to promote bursting in pituitary cells. This burst promoting effect requires fast activation of the BK current, otherwise it is inhibitory to bursting. In this work, we analyze a pituitary cell model in order to answer the question of why the BK activation must be fast to promote bursting. ..."

Re-display model names without descriptions