Models that contain the Model Type : Dendrite

Re-display model names without descriptions
    Models   Description
1. 3D model of the olfactory bulb (Migliore et al. 2014)
This entry contains a link to a full HD version of movie 1 and the NEURON code of the paper: "Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb" by M Migliore, F Cavarretta, ML Hines, and GM Shepherd.
2. A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
1000 Cell Lateral Amygdala model for investigation of plasticity and memory storage during Pavlovian Conditioning.
3. A comparative computer simulation of dendritic morphology (Donohue and Ascoli 2008)
Morphological aspects of dendritic branching such branch lengths, taper rates,ratios of daughter radii, and bifurcation probabilities are measured from real cells. These morphometrics are then resampled to create virtual trees based on the current branch order, radius, path distance to the soma, or combination of the three.
4. A dendritic disinhibitory circuit mechanism for pathway-specific gating (Yang et al. 2016)
"While reading a book in a noisy café, how does your brain ‘gate in’ visual information while filtering out auditory stimuli? Here we propose a mechanism for such flexible routing of information flow in a complex brain network (pathway-specific gating), tested using a network model of pyramidal neurons and three classes of interneurons with connection probabilities constrained by data. We find that if inputs from different pathways cluster on a pyramidal neuron dendrite, a pathway can be gated-on by a disinhibitory circuit motif. ..."
5. A Layer V CCS type pyramidal cell, inhibitory synapse current conduction (Kubota Y et al., 2015)
A layer V crossed-corticostriatal (CCS) ‘slender untufted’ pyramidal cell model of rat frontal cortex was built using Neurolucida tracing as well as 3D reconstructed dendrites of serial electron micrographs to give the model as authentic morphology as possible.
6. A model of unitary responses from A/C and PP synapses in CA3 pyramidal cells (Baker et al. 2010)
The model was used to reproduce experimentally determined mean synaptic response characteristics of unitary AMPA and NMDA synaptic stimulations in CA3 pyramidal cells with the objective of inferring the most likely response properties of the corresponding types of synapses. The model is primarily concerned with passive cells, but models of active dendrites are included.
7. A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012)
These are the NEURON files for 10 different models of a reduced L5 pyramidal neuron. The parameters were obtained by automatically fitting the models to experimental data using a multi objective evolutionary search strategy. Details on the algorithm can be found at <a href=""></a> and in Bahl et al. (2012).
8. A simplified cerebellar Purkinje neuron (the PPR model) (Brown et al. 2011)
These models were implemented in NEURON by Sherry-Ann Brown in the laboratory of Leslie M. Loew. The files reproduce Figures 2c-f from Brown et al, 2011 "Virtual NEURON: a Strategy For Merged Biochemical and Electrophysiological Modeling".
9. Activity dependent changes in dendritic spine density and spine structure (Crook et al. 2007)
"... In this work, we extend previous modeling studies [27] by combining a model for activity-dependent spine density with one for calcium-mediated spine stem restructuring. ... Additional equations characterize the change in spine density along the dendrite, the current balance equation for an individual spine head, the change in calcium concentration in the spine head, and the dynamics of spine stem resistance. We use computational studies to investigate the changes in spine density and structure for differing synaptic inputs and demonstrate the effects of these changes on the input-output properties of the dendritic branch. ... "
10. Axon growth model (Diehl et al. 2016)
The model describes the elongation over time of an axon from a small neurite to its steady-state length. The elongation depends on the availability of tubulin dimers in the growth cone. The dimers are produced in the soma and then transported along the axon to the growth cone. Mathematically the model consists of a partial differential equation coupled with two nonlinear ordinary differential equations. The code implements a spatial scaling to deal with the growing (and shrinking) domain and a temporal scaling to deal with evolutions on different time scales. Further, the numerical scheme is chosen to fully utilize the structure of the problems. To summarize, this results in fast and reliable axon growth simulations.
11. Biologically Constrained Basal Ganglia model (BCBG model) (Lienard, Girard 2014)
We studied the physiology and function of the basal ganglia through the design of mean-field models of the whole basal ganglia. The parameterizations are optimized with multi-objective evolutionary algorithm to respect best a collection of numerous anatomical data and electrophysiological data. The main outcomes of our study are: • The strength of the GPe to GPi/SNr connection does not support opposed activities in the GPe and GPi/SNr. • STN and MSN target more the GPe than the GPi/SNr. • Selection arises from the structure of the basal ganglia, without properly segregated direct and indirect pathways and without specific inputs from pyramidal tract neurons of the cortex. Selection is enhanced when the projection from GPe to GPi/SNr has a diffuse pattern.
12. CA1 oriens alveus interneurons: signaling properties (Minneci et al. 2007)
The model supports the experimental findings showing that the dynamic interaction between cells with various firing patterns could differently affect GABAergic signaling, leading to a wide range of interneuronal communication within the hippocampal network.
13. CA1 pyramidal neuron dendritic spine with plasticity (O`Donnell et al. 2011)
Biophysical model of a dendritic spine and adjacent dendrite with synapse. Model parameters adjusted to fit CA3-CA1 Shaffer collateral synapse data from literature. Model includes both electrical and Ca2+ dynamics, including AMPARs, NMDARs, 4 types of CaV channel, and leak conductance. Spine and synapse are plastic according to Ca2+ dependent rule. The aim of the model is to explore the effects of dendritic spine structural plasticity on the rules of synaptic plasticity.
14. CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
This model simulates the effects of dendritic sodium spikes initiated in distal apical dendrites on the voltage and the calcium dynamics revealed by calcium imaging. It shows that dendritic sodium spike promotes large and transient calcium influxes via NMDA receptor and L-type voltage-gated calcium channels, which contribute to the induction of LTP at distal synapses.
15. CA1 pyramidal neuron: dendritic spike initiation (Gasparini et al 2004)
NEURON mod files from the paper: Sonia Gasparini, Michele Migliore, and Jeffrey C. Magee On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons, J. Neurosci., J. Neurosci. 24:11046-11056 (2004).
16. CA1 pyramidal neuron: effects of Ih on distal inputs (Migliore et al 2004)
NEURON mod files from the paper: M. Migliore, L. Messineo, M. Ferrante Dendritic Ih selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons, J.Comput. Neurosci. 16:5-13 (2004). The model demonstrates how the dendritic Ih in pyramidal neurons could selectively suppress AP generation for a volley of excitatory afferents when they are asynchronously and distally activated.
17. CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
NEURON mod files from the paper: Miceli et al, Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits, PNAS 2013 Feb 25. [Epub ahead of print] In this paper, functional studies revealed that in homomeric or heteromeric configuration with KV7.2 and/or KV7.3 subunits, R213W and R213Q mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. Modeling these channels in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation.
18. CA1 pyramidal neuron: h channel-dependent deficit of theta oscill. resonance (Marcelin et al. 2008)
This model was used to confirm and support experimental data suggesting that the neuronal/circuitry changes associated with temporal lobe epilepsy, including Ih-dependent inductive mechanisms, can disrupt hippocampal theta function.
19. CA1 pyramidal neuron: integration of subthreshold inputs from PP and SC (Migliore 2003)
The model shows how the experimentally observed increase in the dendritic density of Ih and IA could have a major role in constraining the temporal integration window for the main CA1 synaptic inputs.
20. CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
The model demonstrates that CA1 pyramidal neurons support rebound spikes mediated by hyperpolarization-activated inward current (Ih), and normally masked by A-type potassium channels (KA). Partial KA reduction confined to one or few branches of the apical tuft may be sufficient to elicit a local spike following a train of synaptic inhibition. These data suggest that the plastic regulation of KA can provide a dynamic switch to unmask post-inhibitory spiking in CA1 pyramidal neurons, further increasing the signal processing power of the CA1 synaptic microcircuitry.
21. Ca1 pyramidal neuron: reduction model (Marasco et al. 2012)
"... Here we introduce a new, automatic and fast method to map realistic neurons into equivalent reduced models running up to >40 times faster while maintaining a very high accuracy of the membrane potential dynamics during synaptic inputs, and a direct link with experimental observables. The mapping of arbitrary sets of synaptic inputs, without additional fine tuning, would also allow the convenient and efficient implementation of a new generation of large-scale simulations of brain regions reproducing the biological variability observed in real neurons, with unprecedented advances to understand higher brain functions."
22. CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)
NEURON files from the paper: A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior. by M. Migliore, I. De Blasi, D. Tegolo, R. Migliore, Neural Networks,(2011), doi:10.1016/j.neunet.2011.01.001. Starting from the experimentally supported assumption on hippocampal neurons we explore an experimentally testable prediction at the single neuron level. The model shows how and to what extent a pathological hypofunction of a contextdependent distal input on a CA1 neuron can generate hallucinations by altering the normal recall of objects on which the neuron has been previously tuned. The results suggest that a change in the context during the recall phase may cause an occasional but very significant change in the set of active dendrites used for features recognition, leading to a distorted perception of objects.
23. CA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005)
NEURON mod files from the paper: M. Migliore, M. Ferrante, GA Ascoli (2005). The model shows how the back- and forward propagation of action potentials in the oblique dendrites of CA1 neurons could be modulated by local properties such as morphology or active conductances.
24. CA1 pyramidal neuron: synaptic plasticity during theta cycles (Saudargiene et al. 2015)
This NEURON code implements a microcircuit of CA1 pyramidal neuron and consists of a detailed model of CA1 pyramidal cell and four types of inhibitory interneurons (basket, bistratified, axoaxonic and oriens lacunosum-moleculare cells). Synaptic plasticity during theta cycles at a synapse in a single spine on the stratum radiatum dendrite of the CA1 pyramidal cell is modeled using a phenomenological model of synaptic plasticity (Graupner and Brunel, PNAS 109(20):3991-3996, 2012). The code is adapted from the Poirazi CA1 pyramidal cell (ModelDB accession number 20212) and the Cutsuridis microcircuit model (ModelDB accession number 123815)
25. CA1 pyramidal neurons: binding properties and the magical number 7 (Migliore et al. 2008)
NEURON files from the paper: Single neuron binding properties and the magical number 7, by M. Migliore, G. Novara, D. Tegolo, Hippocampus, in press (2008). In an extensive series of simulations with realistic morphologies and active properties, we demonstrate how n radial (oblique) dendrites of these neurons may be used to bind n inputs to generate an output signal. The results suggest a possible neural code as the most effective n-ple of dendrites that can be used for short-term memory recollection of persons, objects, or places. Our analysis predicts a straightforward physiological explanation for the observed puzzling limit of about 7 short-term memory items that can be stored by humans.
26. CA1 pyramidal neurons: effect of external electric field from power lines (Cavarretta et al. 2014)
The paper discusses the effects induced by an electric field at power lines frequency.
27. CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
NEURON mod files from the paper: Miceli et al, Neutralization of a unique, negatively-charged residue in the voltage sensor of K(V)7.2 subunits in a sporadic case of benign familial neonatal seizures, Neurobiol Dis., in press (2009). In this paper, the model revealed that the gating changes introduced by a mutation in K(v)7.2 genes encoding for the neuronal KM current in a case of benign familial neonatal seizures, increased cell firing frequency, thereby triggering the neuronal hyperexcitability which underlies the observed neonatal epileptic condition.
28. CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012)
The model predicts possible therapeutic treatments of Alzheimers's Disease in terms of pharmacological manipulations of channels' kinetic and activation properties. The results suggest how and which mechanism can be targeted by a drug to restore the original firing conditions. The simulations reproduce somatic membrane potential in control conditions, when 90% of membrane is affected by AD (Fig.4A of the paper), and after treatment (Fig.4B of the paper).
29. CA3 pyramidal neuron (Safiulina et al. 2010)
In this review some of the recent work carried out in our laboratory concerning the functional role of GABAergic signalling at immature mossy fibres (MF)-CA3 principal cell synapses has been highlighted. To compare the relative strength of CA3 pyramidal cell output in relation to their MF glutamatergic or GABAergic inputs in postnatal development, a realistic model was constructed taking into account the different biophysical properties of these synapses.
30. CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
In the paper, this model was used to identify how relative differences in K+ conductances, specifically KC, KM, & KD, between cells contribute to the different characteristics of the three types of firing patterns observed experimentally.
31. Ca3 pyramidal neuron: membrane response near rest (Hemond et al. 2009)
In this paper, the model was used to show how the temporal summation of excitatory inputs in CA3 pyramidal neurons was affected by the presence of Ih in the dendrites in a frequency- and distance-dependent fashion.
32. CA3 pyramidal neurons: Kv1.2 mediates modulation of cortical inputs (Hyun et al., 2015)
This model simulates the contribution of dendritic Na+ and D-type K+ channels to EPSPs at three different locations of apical dendrites, which mimicking innervation sites of mossy fibers (MF), recurrent fibers (AC), and perforant pathway (PP).
33. Calcium dynamics depend on dendritic diameters (Anwar et al. 2014)
"... in dendrites there is a strong contribution of morphology because the peak calcium levels are strongly determined by the surface to volume ratio (SVR) of each branch, which is inversely related to branch diameter. In this study we explore the predicted variance of dendritic calcium concentrations due to local changes in dendrite diameter and how this is affected by the modeling approach used. We investigate this in a model of dendritic calcium spiking in different reconstructions of cerebellar Purkinje cells and in morphological analysis of neocortical and hippocampal pyramidal neurons. ..."
34. Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
A morphologically realistic, conductance-based model equipped with kinetic schemes that govern several calcium signalling modules and pathways in CA1 pyramidal neurons
35. Cerebellum granule cell FHF (Dover et al. 2016)
"Neurons in vertebrate central nervous systems initiate and conduct sodium action potentials in distinct subcellular compartments that differ architecturally and electrically. Here, we report several unanticipated passive and active properties of the cerebellar granule cell's unmyelinated axon. Whereas spike initiation at the axon initial segment relies on sodium channel (Nav)-associated fibroblast growth factor homologous factor (FHF) proteins to delay Nav inactivation, distal axonal Navs show little FHF association or FHF requirement for high-frequency transmission, velocity and waveforms of conducting action potentials. ...'
36. Chirp stimulus responses in a morphologically realistic model (Narayanan and Johnston, 2007)
...we built a multicompartmental model with a morphologically realistic three-dimensional reconstruction of a CA1 pyramidal neuron. The only active conductance we added to the model was the h conductance. ... We conclude that experimentally observed gradient in density of h channels could theoretically account for experimentally observed gradient in resonance properties (Narayanan and Johnston, 2007).
37. Compartmental models of growing neurites (Graham and van Ooyen 2004)
Simulator for models of neurite outgrowth. The principle model is a biophysical model of neurite outgrowth described in Graham and van Ooyen (2004). In the model, branching depends on the concentration of a branch-determining substance in each terminal segment. The substance is produced in the cell body and is transported by active transport and diffusion to the terminals. The model reveals that transport-limited effects may give rise to the same modulation of branching as indicated by the stochastic BESTL model. Different limitations arise if transport is dominated by active transport or by diffusion.
38. Compartmentalization of GABAergic inhibition by dendritic spines (Chiu et al. 2013)
A spiny dendrite model supports the hypothesis that only inhibitory inputs on spine heads, not shafts, compartmentalizes inhibition of calcium signals to spine heads as seen in paired inhibition with back-propagating action potential experiments on prefrontal cortex layer 2/3 pyramidal neurons in mouse (Chiu et al. 2013).
39. Continuous time stochastic model for neurite branching (van Elburg 2011)
"In this paper we introduce a continuous time stochastic neurite branching model closely related to the discrete time stochastic BES-model. The discrete time BES-model is underlying current attempts to simulate cortical development, but is difficult to analyze. The new continuous time formulation facilitates analytical treatment thus allowing us to examine the structure of the model more closely. ..."
40. Continuum model of tubulin-driven neurite elongation (Graham et al 2006)
This model investigates the elongation over time of a single developing neurite (axon or dendrite). Our neurite growth model describes the elongation of a single,unbranched neurite in terms of the rate of extension of the microtubule cytoskeleton. The cytoskeleton is not explicitly modelled, but its construction is assumed to depend on the available free tubulin at the growing neurite tip.
41. Controlling KCa channels with different Ca2+ buffering models in Purkinje cell (Anwar et al. 2012)
In this work, we compare the dynamics of different buffering models during generation of a dendritic Ca2+ spike in a single compartment model of a Purkinje cell dendrite. The Ca2+ buffering models used are 1) a single Ca2+ pool, 2) two Ca2+ pools respectively for the fast and slow transients, 3) a detailed calcium model with buffers, pump (Schmidt et al., 2003), and diffusion and 4) a calcium model with buffers, pump and diffusion compensation. The parameters of single pool and double pool are tuned, using Neurofitter (Van Geit et al., 2007), to approximate the behavior of detailed calcium dynamics over range of 0.5 µM to 8 µM of intracellular calcium. The diffusion compensation is modeled using a buffer-like mechanism called DCM. To use DCM robustly for different diameter compartments, its parameters are estimated, using Neurofitter (Van Geit et al., 2007), as a function of compartment diameter (0.8 µm-20 µm).
42. Dendritic Discrimination of Temporal Input Sequences (Branco et al. 2010)
Compartmental model of a layer 2/3 pyramidal cell in the rat somatosensory cortex, exploring NMDA-dependent sensitivity to the temporal sequence of synaptic activation.
43. Dendritic properties control energy efficiency of APs in cortical pyramidal cells (Yi et al 2017)
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The energy efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how the biophysics and morphology contributes to such consumption.
44. Dendritica (Vetter et al 2001)
Dendritica is a collection of programs for relating dendritic geometry and signal propagation. The programs are based on those used for the simulations described in: Vetter, P., Roth, A. & Hausser, M. (2001) For reprint requests and additional information please contact Dr. M. Hausser, email address:
45. Dendro-dendritic synaptic circuit (Shepherd Brayton 1979)
A NEURON simulation has been created to model the passive spread of an EPSP from a mitral cell synapse on a granule cell spine. The EPSP was shown to propagate subthreshold through the dendritic shaft into an adjacent spine with significant amplitude (figure 2B).
46. Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
The model is based on that of Aradi & Holmes (1999; Journal of Computational Neuroscience 6, 215-235). It was used to help understand the contribution of M and SK channels to the medium afterhyperpolarization (mAHP) following one or seven spikes, as well as the contribution of M channels to the slow afterhyperpolarization (sAHP). We found that SK channels are the main determinants of the mAHP, in contrast to CA1 pyramidal cells where the mAHP is primarily caused by the opening of M channels. The model reproduced these experimental results, but we were unable to reproduce the effects of the M-channel blocker XE991 on the sAHP. It is suggested that either the XE991-sensitive component of the sAHP is not due to M channels, or that when contributing to the sAHP, these channels operate in a mode different from that associated with the mAHP.
47. Dentate Gyrus model including Granule cells with dendritic compartments (Chavlis et al 2017)
Here we investigate the role of dentate granule cell dendrites in pattern separation. The model consists of point neurons (Integrate and fire) and in principal neurons, the granule cells, we have incorporated various number of dendrites.
48. Detailed passive cable model of Dentate Gyrus Basket Cells (Norenberg et al. 2010)
Fast-spiking, parvalbumin-expressing basket cells (BCs) play a key role in feedforward and feedback inhibition in the hippocampus. ... To quantitatively address this question, we developed detailed passive cable models of BCs in the dentate gyrus based on dual somatic or somatodendritic recordings and complete morphologic reconstructions. Both specific membrane capacitance and axial resistivity were comparable to those of pyramidal neurons, but the average somatodendritic specific membrane resistance (R(m)) was substantially lower in BCs. Furthermore, R(m) was markedly nonuniform, being lowest in soma and proximal dendrites, intermediate in distal dendrites, and highest in the axon. ... Further computational analysis revealed that these unique cable properties accelerate the time course of synaptic potentials at the soma in response to fast inputs, while boosting the efficacy of slow distal inputs. These properties will facilitate both rapid phasic and efficient tonic activation of BCs in hippocampal microcircuits.
49. Determinants of fast calcium dynamics in dendritic spines and dendrites (Cornelisse et al. 2007)
"... Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR (surface-to-volume ratio) is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity. ..."
50. Discrimination on behavioral time-scales mediated by reaction-diffusion in dendrites (Bhalla 2017)
Sequences of events are ubiquitous in sensory, motor, and cognitive function. Key computational operations, including pattern recognition, event prediction, and plasticity, involve neural discrimination of spatio-temporal sequences. Here we show that synaptically-driven reaction diffusion pathways on dendrites can perform sequence discrimination on behaviorally relevant time-scales. We used abstract signaling models to show that selectivity arises when inputs at successive locations are aligned with, and amplified by, propagating chemical waves triggered by previous inputs. We incorporated biological detail using sequential synaptic input onto spines in morphologically, electrically, and chemically detailed pyramidal neuronal models based on rat data.
51. Early-onset epileptic encephalopathy (Miceli et al. 2015)
Model files from the paper "Early-Onset Epileptic Encephalopathy Caused by Gain-of-Function Mutations in the Voltage Sensor of Kv7.2 and Kv7.3 Potassium Channel Subunits" by Francesco Miceli, Maria Virginia Soldovieri, Paolo Ambrosino, Michela De Maria, Michele Migliore, Rosanna Migliore, and Maurizio Taglialatela J Neurosci. 2015 Mar 4;35(9):3782-93. The file fig7C.hoc reproduces the simulations shown in Fig.7C of the paper.
52. Effect of the initial synaptic state on the probability to induce LTP and LTD (Migliore et al. 2015)
NEURON mod files from the paper: M. Migliore, et al. (2015). In this paper, we investigate the possibility that the experimental protocols on synaptic plasticity may result in different consequences (e.g., LTD instead of LTP), according to the initial conditions of the stimulated synapses, and can generate confusing results. Using biophysical models of synaptic plasticity and hippocampal CA1 pyramidal neurons, we study how, why, and to what extent EPSPs observed at the soma after induction of LTP/LTD reflects the actual (local) synaptic state. The model and the results suggest a physiologically plausible explanation of why LTD induction is experimentally difficult, and they offer experimentally testable predictions on the stimulation protocols that may be more effective.
53. Effects of neural morphology on global and focal NMDA-spikes (Poleg-Polsky 2015)
This entry contains the NEURON files required to recreate figures 4-8 of the paper "Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-spikes" by Alon Poleg-Polsky
54. Effects of synaptic location and timing on synaptic integration (Rall 1964)
Reproduces figures 5 - 8 from Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modeling, ed. Reiss, R.F., Palo Alto: Stanford University Press (1964).
55. Ephaptic coupling in passive cable and MSO neuron models (Goldwyn & Rinzel 2016)
Simulation code to explore how the synchronous activity of a bundle of neurons generates extracellular voltage, and how this extracellular voltage influences the membrane potential of "nearby" neurons. A non-synaptic mechanism known as ephaptic coupling. A model of a passive cable population (including user-friendly matlab GUI) and a model of medial superior olive neurons are included.
56. Excitatory synaptic interactions in pyramidal neuron dendrites (Behabadi et al. 2012)
" ... We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. ..."
57. Four cortical interneuron subtypes (Kubota et al. 2011)
" ... Using electron microscopy and serial reconstructions, we analyzed the dendritic trees of four morphologically distinct neocortical interneuron subtypes to reveal two underlying organizational principles common to all. First, cross-sectional areas at any given point within a dendrite were proportional to the summed length of all dendritic segments distal to that point. ... Second, dendritic cross-sections became progressively more elliptical at more proximal, larger diameter, dendritic locations. Finally, computer simulations revealed that these conserved morphological features limit distance dependent filtering of somatic EPSPs and facilitate distribution of somatic depolarization into all dendritic compartments. ..."
58. Functional impact of dendritic branch point morphology (Ferrante et al., 2013)
" ... Here, we first quantified the morphological variability of branch points from two-photon images of rat CA1 pyramidal neurons. We then investigated the geometrical features affecting spike initiation, propagation, and timing with a computational model validated by glutamate uncaging experiments. The results suggest that even subtle membrane readjustments at branch point could drastically alter the ability of synaptic input to generate, propagate, and time action potentials."
59. Gap junction coupled network of striatal fast spiking interneurons (Hjorth et al. 2009)
Gap junctions between striatal FS neurons has very weak ability to synchronise spiking. Input uncorrelated between neighbouring neurons is shunted, while correlated input is not.
60. Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
" ... We use the lamprey as a model for investigating the role of this phasic modulation of the reticulospinal activity, because the brainstem–spinal cord networks are known down to the cellular level in this phylogenetically oldest extant vertebrate. We describe how the phasic modulation of reticulospinal activity from the spinal CPG ensures reliable steering/turning commands without the need for a very precise timing of on- or offset, by using a biophysically detailed large-scale (19,600 model neurons and 646,800 synapses) computational model of the lamprey brainstem–spinal cord network. To verify that the simulated neural network can control body movements, including turning, the spinal activity is fed to a mechanical model of lamprey swimming. ..."
61. Generation of granule cell dendritic morphology (Schneider et al. 2014)
The following code was used to generate a complete population of 1.2 million granule cell dendritic morphologies within a realistic three-dimensional context. These generated dendritic morphologies match the known biological variability and context-dependence of morphological features.
62. Geometry-induced features of current transfer in neuronal dendrites (Korogod, Kulagina 1998)
The impact of dendritic geometry on somatopetal transfer of the current generated by steady uniform activation of excitatory synaptic conductance distributed over passive, or active (Hodgkin-Huxley type), dendrites was studied in simulated neurons.
63. Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)
A set of 9 multi-compartmental rat GP neuron models (585 compartments) differing only in their expression of dendritic fast sodium channels were compared in their synaptic integration properties. Dendritic fast sodium channels were found to increase the importance of distal synapses (both excitatory AND inhibitory), increase spike timing variability with in vivo-like synaptic input, and make the model neurons highly sensitive to clustered synchronous excitation.
64. Human L2/3 pyramidal cells with low Cm values (Eyal et al. 2016)
The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance (Cm) of ~0.5 µF/cm2, half of the commonly accepted “universal” value (~1 µF/cm2) for biological membranes. This finding was predicted by fitting in vitro voltage transients to theoretical transients then validated by direct measurement of Cm in nucleated patch experiments. Models of 3D reconstructed HL2/3 PCs demonstrated that such low Cm value significantly enhances both synaptic charge-transfer from dendrites to soma and spike propagation along the axon. This is the first demonstration that human cortical neurons have distinctive membrane properties, suggesting important implications for signal processing in human neocortex.
65. Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
These simulations examined the atrophy induced changes in electrophysiological properties of CA3 pyramidal neurons. We found these neurons change from bursting to regular spiking as atrophy increases. Region-specific atrophy induced region-specific increases in synaptic excitability in a passive dendritic tree. All dendritic compartments of an atrophied neuron had greater synaptic excitability and a larger voltage transfer to the soma than the control neuron.
66. Ionic mechanisms of dendritic spikes (Almog and Korngreen 2014)
We used a combined experimental and numerical parameter peeling procedure was implemented to optimize a detailed ionic mechanism for the generation and propagation of dendritic spikes in neocortical L5 pyramidal neurons. Run the cc_run.hoc to get a demo for dendritic calcium spike generated by coincidence of a back-propagating AP and distal synaptic input.
67. L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
Using a heavily constrained biophysical model of a L5 PFC microcircuit we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes.
68. Large scale model of the olfactory bulb (Yu et al., 2013)
The readme file currently contains links to the results for all the 72 odors investigated in the paper, and the movie showing the network activity during learning of odor k3-3 (an aliphatic ketone).
69. Mechanisms underlying subunit independence in pyramidal neuron dendrites (Behabadi and Mel 2014)
"...Using a detailed compartmental model of a layer 5 pyramidal neuron, and an improved method for quantifying subunit independence that incorporates a more accurate model of dendritic integration, we first established that the output of each dendrite can be almost perfectly predicted by the intensity and spatial configuration of its own synaptic inputs, and is nearly invariant to the rate of bAP-mediated 'cross-talk' from other dendrites over a 100-fold range..."
70. Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
"... We simulated detailed conductance-based models of TTCs (Layer 5 thick tufted pyramidal cells) forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. ... Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. "
71. Model of calcium oscillations in olfactory cilia (Reidl et al. 2006)
Simulation of experiments on olfactory receptor neurons (ORNs). Focussing on the negative feedback that calcium (through calmodulin) has on its own influx through CNG channels, this model is able to reproduce both calcium oscillations as well as adaptation behaviour as seen in experiments done with ORNs.
72. Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
The model demonstrates how signal amplification with NMDARs depends on the synaptic environment. When direction selectivity (DS) detection is mediated by DS inhibition, NMDARs multiply other synaptic conductances. In the case of DS tuned excitation, NMDARs contribute additively.
73. Multiscale model of olfactory receptor neuron in mouse (Dougherty 2009)
Collection of XPP (.ode) files simulating the signal transduction (slow) and action potential (fast) currents in the olfactory receptor neuron of mouse. Collection contains model configured for dual odorant pulse delivery and model configured for prolonged odorant delivery. For those interested more in transduction processes, each whole cell recording model comes with a counter part file configured to show just the slow transduction current for ease of use and convenience. These transduction-only models typically run faster than the full multi-scale models but do not demonstrate action potentials.
74. Na+ Signals in olfactory bulb neurons (granule cell model) (Ona-Jodar et al. 2017)
Simulations of Na+ during action potentials in granule cells replicated the behaviors observed in experiments.
75. NAcc medium spiny neuron: effects of cannabinoid withdrawal (Spiga et al. 2010)
Cannabinoid withdrawal produces a hypofunction of dopaminergic neurons targeting medium spiny neurons (MSN) of the forebrain. Administration of a CB1 receptor antagonist to control rats provoked structural abnormalities, reminiscent of those observed in withdrawal conditions and support the regulatory role of cannabinoids in neurogenesis, axonal growth and synaptogenesis. Experimental observations were incorporated into a realistic computational model which predicts a strong reduction in the excitability of morphologically-altered MSN, yielding a significant reduction in action potential output. These paper provided direct morphological evidence for functional abnormalities associated with cannabinoid dependence at the level of dopaminergic neurons and their post synaptic counterpart, supporting a hypodopaminergic state as a distinctive feature of the “addicted brain”.
76. Neurite: electrophysiological-mechanical coupling simulation framework (Garcia-Grajales et al 2015)
Neurite simulates the electrical signal propagation in myelinated and unmyelinated axons, and in dendritic trees under mechanical loading. Two different solvers are available (explicit and implicit) with sequential (CPU) and parallel (GPUs) versions
77. Neuronal dendrite calcium wave model (Neymotin et al, 2015)
"... We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP3 ), diffusible Ca2+, IP3 receptors (IP3 Rs), endoplasmic reticulum (ER) Ca2+ leak, and ER pump (SERCA) on ER. ... At least two modes of Ca2+ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell; and a pseudo-saltatory model where Ca2+ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP3 R distribution: 1. continuous homogeneous ER, 2. hotspots with increased IP3R density (IP3 R hotspots), 3. areas of increased ER density (ER stacks). All three modes produced Ca2+ waves with velocities similar to those measured in vitro (~50 - 90µm /sec). ... The measures were sensitive to changes in density and spacing of IP3 R hotspots and stacks. ... An extended electrochemical model, including voltage gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca2+ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP3 Rs and SERCA could allow modulation of Ca2+ wave propagation in diseases where Ca2+ dysregulation has been implicated. "
78. Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
This is a multi-compartmental simulation of a spiny stellate neuron which is stimulated by a thalamocortical (TC) and cortico-cortical (CC) inputs. No other cells are explicitly modeled; the presynaptic network activation is represented by the number of active synapses. Preferred and non –preferred thalamic directions thus correspond to larder/smaller number of TC synapses. This simulation revealed that randomly activated synapses can cooperatively trigger global NMDA spikes, which involve participation of most of the dendritic tree. Surprisingly, we found that although the voltage profile of the cell was uniform, the calcium influx was restricted to ‘hot spots’ which correspond to synaptic clusters or large conductance synapses
79. Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)
The model supports the experimental findings on the effects of postnatal odor deprivation, and shows that a -10mV shift in the Na activation or a reduction in the dendritic length of newborn GC could independently explain the observed increase in excitability.
80. Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
This model of the dendrodendritic mitral-granule synaptic network generates gamma and beta oscillations as a function of the granule cell excitability, which is represented by the granule cell resting membrane potential.
81. Olfactory receptor neuron model (Dougherty et al 2005)
Demonstration of ORN model by Dougherty, Wright and Yew (2005) PNAS 102: 10415-10420. This program, dwy_pnas_demo2, simulates the transduction current response of a single olfactory receptor neuron being stimulated by an odorant plume. The program is interactive in that a user can tweak parameter values and stimulus conditions. Also, users can save a configuration in a mat-file or export all aspects to a directory of text files. These text files can be read by other programs. There is also an import facility for importing text files from a directory that allows the user to specify their own data, pulses and parameters.
82. Optical stimulation of a channelrhodopsin-2 positive pyramidal neuron model (Foutz et al 2012)
A computational tool to explore the underlying principles of optogenetic neural stimulation. This "light-neuron" model consists of theoretical representations of the light dynamics generated by a fiber optic in brain tissue, coupled to a multicompartment cable model of a cortical pyramidal neuron (Hu et al. 2009, ModelDB #123897) embedded with channelrhodopsin-2 (ChR2) membrane dynamics. Simulations predict that the activation threshold is sensitive to many of the properties of ChR2 (density, conductivity, and kinetics), tissue medium (scattering and absorbance), and the fiber-optic light source (diameter and numerical aperture). This model system represents a scientific instrument to characterize the effects of optogenetic neuromodulation, as well as an engineering design tool to help guide future development of optogenetic technology.
83. Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
Using the Traub et al (2005) model of the cortex we determined how 33 synaptic strength parameters control gamma oscillations. We used fractional factorial design to reduce the number of runs required to 4096. We found an expected multiplicative interaction between parameters.
84. Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
The authors found that linearly scaling the ion channel conductance densities of a reference model with the conductance load in 28 3D reconstructed layer 5 thick-tufted pyramidal cells was necessary to match the experimental statistics of these cells electrical firing properties.
85. Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
"... This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signaling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modeling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience."
86. Python-based toolkits for STEPS (Chen and De Schutter 2014)
We provide two examples to demonstrate the use of the geometry preparation toolkit and the visualization tool for STEPS, described in Chen W and De Schutter E (2014). The package contains two folders, each for an individual example. The ip3r folder contains mesh data and simulation scripts for the IP3 receptor model described in the paper, and the AD folder contains data and scripts for Anomalous Diffusion simulation. Please read the instruction.pdf file within the package for detail instructions.
87. Region-specific atrophy in dendrites (Narayanan, Narayan, Chattarji, 2005) this study, we develop an algorithm that uses statistics from precise morphometric analyses to systematically remodel neuronal reconstructions. We use the distribution function of the ratio of two normal distributed random variables to specify the probabilities of remodeling along various regions of the dendritic arborization. We then use these probabilities to drive an iterative algorithm for manipulating the dendritic tree in a region-specific manner. As a test, we apply this framework to a well characterized example of dendritic remodeling: stress-induced dendritic atrophy in hippocampal CA3 pyramidal cells. We show that our pruning algorithm is capable of eliciting atrophy that matches biological data from rodent models of chronic stress. <br>
88. Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
We explored dendritic plateau potentials in a biophysically detailed SPN model. We coupled the dendritic plateaus to different types of inhibitions (dendritic fast and slow inhibitions, perisomatic inhibition from FS interneurons , etc.) We found the inhibition provides precise control over the plateau potential, and thus the spiking output of SPNs.
89. Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013)
" ... In single Purkinje cells, spontaneous and synaptically evoked dendritic calcium bursts come in a variety of shapes with a variable number of spikes. The mechanisms causing this variability have never been investigated thoroughly. In this study, a detailed computational model employing novel simulation routines is applied to identify the roles that stochastic ion channels, spatial arrangements of ion channels and stochastic intracellular calcium have towards producing calcium burst variability. … Our findings suggest that stochastic intracellular calcium mechanisms play a crucial role in dendritic calcium spike generation and are, therefore, an essential consideration in studies of neuronal excitability and plasticity."
90. Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)
This study investigates the mechanisms that are affected in the striatal network after dopamine depletion and identifies potential therapeutic targets to restore normal activity.
91. Striatal Spiny Projection Neuron (SPN) plasticity rule (Jedrzejewska-Szmek et al 2016)
92. Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
The computational model of in vivo sharp-wave ripples with place cell replay. Excitatory post-synaptic potentials at dendrites gate antidromic spikes arriving from the axonal collateral, and thus determine when the soma and the main axon fire. The model allows synchronous replay of pyramidal cells during sharp-wave ripple event, and the replay is possible in both forward and reverse directions.
93. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
Simulations used in the paper. Voltage responses to current injections in different tuft locations; NMDA and calcium spike generation. Summation of multiple input distribution.
94. Synaptic integration of an identified nonspiking interneuron in crayfish (Takashima et al 2006)
This GENESIS simulation shows how a single or compound excitatory synaptic potential evoked by mechanosensory stimulation spreads over the dendrites of the LDS interneuron that is one of the identified nonspiking interneurons in the central nervous system of crayfish Procambarus clarkii. The model is based on physiological experiments carried out by Akira Takashima using single-electrode voltage clamp techniques and also 3-D morphometry of the interneuron carried out by Ryou Hikosaka using confocal laser scanning microscopic techniques. The physiological and morphological studies were coordinated by Masakazu Takahata.
95. Using Strahler`s analysis to reduce realistic models (Marasco et al, 2013)
Building on our previous work (Marasco et al., (2012)), we present a general reduction method based on Strahler's analysis of neuron morphologies. We show that, without any fitting or tuning procedures, it is possible to map any morphologically and biophysically accurate neuron model into an equivalent reduced version. Using this method for Purkinje cells, we demonstrate how run times can be reduced up to 200-fold, while accurately taking into account the effects of arbitrarily located and activated synaptic inputs.
96. Vertical System (VS) tangential cells network model (Trousdale et al. 2014)
Network model of the VS tangential cell system, with 10 cells per hemisphere. Each cell is a two compartment model with one compartment for dendrites and one for the axon. The cells are coupled through axonal gap junctions. The code allows to simulate responses of the VS network to a variety of visual stimuli to investigate coding as a function of gap junction strength.

Re-display model names without descriptions