| Models |
1. |
3D olfactory bulb: operators (Migliore et al, 2015)
|
2. |
3D-printer visualization of NEURON models (McDougal and Shepherd, 2015)
|
3. |
A contracting model of the basal ganglia (Girard et al. 2008)
|
4. |
A detailed Purkinje cell model (Masoli et al 2015)
|
5. |
A general model of hippocampal and dorsal striatal learning and decision making (Geerts et al 2020)
|
6. |
A model of ASIC1a and synaptic cleft pH modulating wind-up in wide dynamic range neurons (Delrocq)
|
7. |
A model of optimal learning with redundant synaptic connections (Hiratani & Fukai 2018)
|
8. |
A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
|
9. |
A simple model of neuromodulatory state-dependent synaptic plasticity (Pedrosa and Clopath, 2016)
|
10. |
A single-cell spiking model for the origin of grid-cell patterns (D'Albis & Kempter 2017)
|
11. |
A spatial model of the intermediate superior colliculus (Moren et. al. 2013)
|
12. |
A synapse model for developing somatosensory cortex (Manninen et al 2020)
|
13. |
Accurate and fast simulation of channel noise in conductance-based model neurons (Linaro et al 2011)
|
14. |
Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model (Humphries et al., 2021)
|
15. |
Action potential-evoked Na+ influx similar in axon and soma (Fleidervish et al. 2010) (Python)
|
16. |
Activity patterns in a subthalamopallidal network of the basal ganglia model (Terman et al 2002)
|
17. |
Adaptive dual control of deep brain stimulation in Parkinsons disease simulations (Grado et al 2018)
|
18. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
19. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
20. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
21. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
22. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
23. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
24. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
25. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
26. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
27. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
28. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
29. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
30. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
31. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
32. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
33. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
34. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
35. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
36. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
37. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
38. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
39. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
40. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
41. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
42. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
43. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
44. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
45. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
46. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
47. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
48. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
49. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
50. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
51. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
52. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
53. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
54. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
55. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
56. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
57. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
58. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
59. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
60. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
61. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
62. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
63. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
64. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
65. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
66. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
67. |
An attractor network model of grid cells and theta-nested gamma oscillations (Pastoll et al 2013)
|
68. |
Analytical modelling of temperature effects on an AMPA-type synapse (Kufel & Wojcik 2018)
|
69. |
AOB mitral cell: persistent activity without feedback (Zylbertal et al., 2015)
|
70. |
Automated metadata suggester (McDougal et al 2018)
|
71. |
Ave. neuron model for slow-wave sleep in cortex Tatsuki 2016 Yoshida 2018 Rasmussen 2017 (all et al)
|
72. |
Biophysical model for field potentials of networks of I&F neurons (beim Graben & Serafim 2013)
|
73. |
Biophysically detailed model of somatosensory thalamocortical circuit
|
74. |
Boolean network-based analysis of the apoptosis network (Mai and Liu 2009)
|
75. |
Brain networks simulators - a comparative study (Tikidji-Hamburyan et al 2017)
|
76. |
Brette-Gerstner model (Touboul and Brette 2008)
|
77. |
CA1 PV+ fast-firing hippocampal interneuron (Ferguson et al. 2013)
|
78. |
CA1 pyr cell: Inhibitory modulation of spatial selectivity+phase precession (Grienberger et al 2017)
|
79. |
CA1 pyr cell: phenomenological NMDAR-based model of synaptic plasticity (Dainauskas et al 2023)
|
80. |
CA1 pyramidal cell receptor dependent cAMP dynamics (Chay et al. 2016)
|
81. |
CA1 pyramidal neuron (Ferguson et al. 2014)
|
82. |
CA1 pyramidal neuron network model (Ferguson et al 2015)
|
83. |
CA1 SOM+ (OLM) hippocampal interneuron (Ferguson et al. 2015)
|
84. |
Ca2+ oscillations in single astrocytes (Lavrentovich and Hemkin 2008) (python) (Manninen et al 2017)
|
85. |
CA3 Network Model of Epileptic Activity (Sanjay et. al, 2015)
|
86. |
Calculating the consequences of left-shifted Nav channel activity in sick cells (Joos et al 2018)
|
87. |
Cellular and Synaptic Mechanisms Differentiate Mitral & Superficial Tufted Cells (Jones et al 2020)
|
88. |
Central Nervous System tadpole model in Matlab and NEURON-Python (Ferrario et al, 2021)
|
89. |
Cerebellar granule cell (Masoli et al 2020)
|
90. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian 2)
|
91. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian)
|
92. |
Code to calc. spike-trig. ave (STA) conduct. from Vm (Pospischil et al. 2007, Rudolph et al. 2007)
|
93. |
Coincident signals in Olfactory Bulb Granule Cell spines (Aghvami et al 2019)
|
94. |
Comparison of DA-based Stochastic Algorithms (Pezo et al. 2014)
|
95. |
Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
|
96. |
Computational modeling of gephyrin-dependent inhibitory transsynaptic signaling (Lupascu et al 2020)
|
97. |
Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017)
|
98. |
Computing with neural synchrony (Brette 2012)
|
99. |
Concentration dependent nonlinear K+ and Cl- leak current (Huang et al. 2015)
|
100. |
Conductance-based model of rodent thoracic sympathetic postganglionic neuron (McKinnon et al 2019)
|
101. |
Connection-set Algebra (CSA) for the representation of connectivity in NN models (Djurfeldt 2012)
|
102. |
Constructed Tessellated Neuronal Geometries (CTNG) (McDougal et al. 2013)
|
103. |
Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
|
104. |
Cortical feedback alters visual response properties of dLGN relay cells (Martínez-Cañada et al 2018)
|
105. |
CRH modulates excitatory transmission and network physiology in hippocampus (Gunn et al. 2017)
|
106. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
107. |
Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. 2021)
|
108. |
Dentate Gyrus model including Granule cells with dendritic compartments (Chavlis et al 2017)
|
109. |
Depolarization Enhacement of Dendritic Spike Propagation (Bock et al 2022)
|
110. |
Diffusive homeostasis in a spiking network model (Sweeney et al. 2015)
|
111. |
Distal inhibitory control of sensory-evoked excitation (Egger, Schmitt et al. 2015)
|
112. |
Dorsal Column Fiber Stimulation model (Gilbert et al. 2022)
|
113. |
Duration-tuned neurons from the inferior colliculus of vertebrates (Aubie et al. 2012)
|
114. |
Earthworm medial giant fiber conduction velocity across electrical synapses (Heller, Crisp 2016)
|
115. |
Effect of polysynaptic facilitaiton between piriform-hippocampal network stages (Trieu et al 2015)
|
116. |
Efficient simulation of 3D reaction-diffusion in models of neurons (McDougal et al, 2022)
|
117. |
Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)
|
118. |
ELL Medium Ganglion Cell (Mormyrid fish) (Muller et al, accepted)
|
119. |
ELL Medium Ganglion cell (Muller et al 2019)
|
120. |
Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)
|
121. |
Excitatory synaptic interactions in pyramidal neuron dendrites (Behabadi et al. 2012)
|
122. |
Explainable AI for spatial navigation based on hippocampal circuitry (Coppolino + Migliore 2023)
|
123. |
Fast Spiking Basket cells (Tzilivaki et al 2019)
|
124. |
Feedforward network undergoing Up-state-mediated plasticity (Gonzalez-Rueda et al. 2018)
|
125. |
Firing patterns of CA3 hippocampal neurons (Soldado-Magraner et al. 2019)
|
126. |
Fully continuous Pinsky-Rinzel model for bifurcation analysis (Atherton et al. 2016)
|
127. |
Functional balanced networks with synaptic plasticity (Sadeh et al, 2015)
|
128. |
Gamma-beta alternation in the olfactory bulb (David, Fourcaud-Trocmé et al., 2015)
|
129. |
Gap junction plasticity as a mechanism to regulate network-wide oscillations (Pernelle et al 2018)
|
130. |
Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)
|
131. |
Glutamate-evoked Ca2+ oscillations in single astrocytes (De Pitta et al. 2009) (Manninen et al 2017)
|
132. |
Glutamate-evoked Ca2+ oscillations in single astrocytes (Modified from Dupont et al. 2011)
|
133. |
Goldfish Mauthner cell (Medan et al 2017)
|
134. |
Grid cell-to-place cell transformation model w AD-related synaptic loss (Ness and Schultz 2021)
|
135. |
Hierarchical network model of perceptual decision making (Wimmer et al 2015)
|
136. |
Hippocampal CA1 pyramidal cell demonstrating dynamic mode switching (Berteau & Bullock 2020)
|
137. |
Hopfield and Brody model (Hopfield, Brody 2000) (NEURON+python)
|
138. |
Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018)
|
139. |
Human L2/3 pyramidal cells with low Cm values (Eyal et al. 2016)
|
140. |
Hyperexcitability from Nav1.2 channel loss in neocortical pyramidal cells (Spratt et al 2021)
|
141. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
142. |
Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)
|
143. |
In vivo imaging of dentate gyrus mossy cells in behaving mice (Danielson et al 2017)
|
144. |
Information transmission in cerebellar granule cell models (Rossert et al. 2014)
|
145. |
Inhibition of bAPs and Ca2+ spikes in a multi-compartment pyramidal neuron model (Wilmes et al 2016)
|
146. |
Inhibitory neuron plasticity as a mechanism for ocular dominance plasticity (Bono & Clopath 2019)
|
147. |
Inhibitory plasticity balances excitation and inhibition (Vogels et al. 2011)
|
148. |
Input strength and time-varying oscillation peak frequency (Cohen MX 2014)
|
149. |
Interplay between somatic and dendritic inhibition promotes place fields (Pedrosa & Clopath 2020)
|
150. |
Kernel method to calculate LFPs from networks of point neurons (Telenczuk et al 2020)
|
151. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
152. |
Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)
|
153. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
154. |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
|
155. |
LCN-HippoModel: model of CA1 PCs deep-superficial theta firing dynamics (Navas-Olive et al 2020)
|
156. |
Leaky Integrate and Fire Neuron Model of Context Integration (Calvin, Redish 2021)
|
157. |
LFP in striatum (Tanaka & Nakamura 2019)
|
158. |
Library of biophysically detailed striatal projection neurons (Lindroos and Hellgren Kotaleski 2020)
|
159. |
Locus Coeruleus blocking model (Chowdhury et al.)
|
160. |
Maximal firing rate in midbrain dopamine neurons (Knowlton et al., 2021)
|
161. |
Mean field model for Hodgkin Huxley networks of neurons (Carlu et al 2020)
|
162. |
Mean-Field models of conductance-based NNs of spiking neurons with adaptation (di Volo et al 2019)
|
163. |
MEC layer II stellate cell: Synaptic mechanisms of grid cells (Schmidt-Hieber & Hausser 2013)
|
164. |
Mechanisms underlying subunit independence in pyramidal neuron dendrites (Behabadi and Mel 2014)
|
165. |
Memory savings through unified pre- and postsynaptic STDP (Costa et al 2015)
|
166. |
Mesoscopic dynamics from AdEx recurrent networks (Zerlaut et al JCNS 2018)
|
167. |
Mesoscopic dynamics from AdEx recurrent networks (Zerlaut et al JCNS 2018) (PyNN)
|
168. |
Minimal model of interictal and ictal discharges “Epileptor-2” (Chizhov et al 2018)
|
169. |
Model of eupnea and sigh generation in respiratory network (Toporikova et al 2015)
|
170. |
Model of peripheral nerve with ephaptic coupling (Capllonch-Juan & Sepulveda 2020)
|
171. |
Model of peristalsis in the dorsal blood vessel of Lumbriculus variegatus (Halfmann and Crisp 2011)
|
172. |
Model of Type 3 firing in neurons (Clay et al 2008)
|
173. |
Modeling a Nociceptive Neuro-Immune Synapse Activated by ATP and 5-HT in Meninges (Suleimanova et al., 2020)
|
174. |
Modeling and MEG evidence of early consonance processing in auditory cortex (Tabas et al 2019)
|
175. |
Modeling dendritic spikes and plasticity (Bono and Clopath 2017)
|
176. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
177. |
Modelling the effects of short and random proto-neural elongations (de Wiljes et al 2017)
|
178. |
Models of visual topographic map alignment in the Superior Colliculus (Tikidji-Hamburyan et al 2016)
|
179. |
ModelView: online structural analysis of computational models (McDougal et al. 2015)
|
180. |
Modular grid cell responses as a basis for hippocampal remapping (Monaco and Abbott 2011)
|
181. |
Motion Clouds: Synthesis of random textures for motion perception (Leon et al. 2012)
|
182. |
Motor system model with reinforcement learning drives virtual arm (Dura-Bernal et al 2017)
|
183. |
Multi-timescale adaptive threshold model (Kobayashi et al 2009) (NEURON)
|
184. |
Multifunctional control of feeding in Aplysia (Webster-Wood et al. 2020)
|
185. |
MultiScale Optimized Neuronal Intramembrane Cavitation (SONIC) model (Lemaire et al. 2019)
|
186. |
Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
|
187. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
188. |
Muscle spindle feedback circuit (Moraud et al, 2016)
|
189. |
Na+ Signals in olfactory bulb neurons (granule cell model) (Ona-Jodar et al. 2017)
|
190. |
Network bursts in cultured NN result from different adaptive mechanisms (Masquelier & Deco 2013)
|
191. |
Network dynamics of electrically coupled pituitary cells (Fazli and Bertram, 2022)
|
192. |
Networks of spiking neurons: a review of tools and strategies (Brette et al. 2007)
|
193. |
Neural Field Simulator (Nichols & Hutt 2012-2015)
|
194. |
Neural mass model based on single cell dynamics to model pathophysiology (Zandt et al 2014)
|
195. |
NeuroGPU example on L5_TTPC1_cADpyr232_1 (Ben-Shalom 2022)(Ramaswamy et al., 2015)
|
196. |
Neuromuscular network model of gut motility (Barth et al 2017)
|
197. |
NEURON + Python (Hines et al. 2009)
|
198. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
199. |
Online learning model of olfactory bulb external plexiform layer network (Imam & Cleland 2020)
|
200. |
Optical stimulation of a channelrhodopsin-2 positive pyramidal neuron model (Foutz et al 2012)
|
201. |
Orientation selectivity in inhibition-dominated recurrent networks (Sadeh and Rotter, 2015)
|
202. |
Oscillations, phase-of-firing coding and STDP: an efficient learning scheme (Masquelier et al. 2009)
|
203. |
Parallel Tempering MCMC on Liu et al 1998 (Wang et al 2022)
|
204. |
Perfect Integrate and fire with noisy adaptation or fractional noise (Richard et al 2018)
|
205. |
Phase response curves firing rate dependency of rat purkinje neurons in vitro (Couto et al 2015)
|
206. |
Phase response theory in sparsely + strongly connected inhibitory NNs (Tikidji-Hamburyan et al 2019)
|
207. |
Phenomenological models of NaV1.5: Hodgkin-Huxley and kinetic formalisms (Andreozzi et al 2019)
|
208. |
PIR gamma oscillations in network of resonators (Tikidji-Hamburyan et al. 2015)
|
209. |
Place and grid cells in a loop (Rennó-Costa & Tort 2017)
|
210. |
Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
|
211. |
PLS-framework (Tikidji-Hamburyan and Colonnese 2021)
|
212. |
Potjans-Diesmann cortical microcircuit model in NetPyNE (Romaro et al 2021)
|
213. |
PyMUS: A Python based Motor Unit Simulator (Kim & Kim 2018)
|
214. |
Python demo of the VmT method to extract conductances from single Vm traces (Pospischil et al. 2009)
|
215. |
Recurrent amplification of grid-cell activity (D'Albis and Kempter 2020)
|
216. |
Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21)
|
217. |
Resource competition in growing neurites (Hjorth et al 2014)
|
218. |
Reward modulated STDP (Legenstein et al. 2008)
|
219. |
Scaffold model of mouse CA1 hippocampus. (Gandolfi et al 2022)
|
220. |
Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016)
|
221. |
SCN1A gain-of-function in early infantile encephalopathy (Berecki et al 2019)
|
222. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
223. |
Self-organization of cortical areas in development and evolution of neocortex (Imam & Finlay 2021)
|
224. |
Sensory feedback in an oscillatory interference model of place cell activity (Monaco et al. 2011)
|
225. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
226. |
Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
|
227. |
Simulation of calcium signaling in fine astrocytic processes (Denizot et al 2019)
|
228. |
Single Trial Sequence learning: a spiking neurons model based on hippocampus (Coppolino et al 2021)
|
229. |
Somatodendritic consistency check for temporal feature segmentation (Asabuki & Fukai 2020)
|
230. |
Sound-evoked activity in peripheral axons of type I spiral ganglion neurons (Budak et al. 2021)
|
231. |
Sparse connectivity is required for decorrelation, pattern separation (Cayco-Gajic et al 2017)
|
232. |
Spatial structure from diffusive synaptic plasticity (Sweeney and Clopath, 2016)
|
233. |
Spike-Timing-Based Computation in Sound Localization (Goodman and Brette 2010)
|
234. |
Spikelet generation and AP initiation in a L5 neocortical pyr neuron (Michalikova et al. 2017) Fig 1
|
235. |
Spikelet generation and AP initiation in a simplified pyr neuron (Michalikova et al. 2017) Fig 3
|
236. |
Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell)
|
237. |
Spontaneous calcium oscillations in single astrocytes (Riera et al. 2011) (Manninen et al 2017)
|
238. |
Spontaneous weakly correlated excitation and inhibition (Tan et al. 2013)
|
239. |
STDP allows fast rate-modulated coding with Poisson-like spike trains (Gilson et al. 2011)
|
240. |
STDP and oscillations produce phase-locking (Muller et al. 2011)
|
241. |
Stochastic versions of the Hodgkin-Huxley equations (Goldwyn, Shea-Brown 2011) (pylab)
|
242. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
243. |
Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013)
|
244. |
Switching circuit for optimal context integration during static + moving contexts (Voina et al 2022)
|
245. |
Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013)
|
246. |
Synchronized oscillations of clock gene expression in the choroid plexus (Myung et al 2018)
|
247. |
Tag Trigger Consolidation (Clopath and Ziegler et al. 2008)
|
248. |
The electrodiffusive Pinsky-Rinzel (edPR) model (Sætra et al., 2020)
|
249. |
Theory and simulation of integrate-and-fire neurons driven by shot noise (Droste & Lindner 2017)
|
250. |
TRPM8-dependent dynamic response in cold thermoreceptors (Olivares et al. 2015)
|
251. |
Unsupervised learning of an efficient short-term memory network (Vertechi, Brendel & Machens 2014)
|
252. |
Ventromedial Thalamocortical Neuron (Bichler et al 2021)
|
253. |
Vertical System (VS) tangential cells network model (Trousdale et al. 2014)
|
254. |
Voltage-based STDP synapse (Clopath et al. 2010)
|
255. |
Voltage-gated conductances can counteract filtering effect of membrane capacitance (Heras et al '16)
|