| Models |
1. |
A cerebellar model of phase-locked tACS for essential tremor (Schreglmann et al., 2021)
|
2. |
A Computational Model of Bidirectional Plasticity Regulation by betaCaMKII (Pinto et al. 2019)
|
3. |
A cortico-cerebello-thalamo-cortical loop model under essential tremor (Zhang & Santaniello 2019)
|
4. |
A detailed Purkinje cell model (Masoli et al 2015)
|
5. |
A model of cerebellar LTD including RKIP inactivation of Raf and MEK (Hepburn et al 2017)
|
6. |
A simplified cerebellar Purkinje neuron (the PPR model) (Brown et al. 2011)
|
7. |
Adaptive robotic control driven by a versatile spiking cerebellar network (Casellato et al. 2014)
|
8. |
Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
|
9. |
Alcohol excites Cerebellar Golgi Cells by inhibiting the Na+/K+ ATPase (Botta et al.2010)
|
10. |
Basis for temporal filters in the cerebellar granular layer (Roessert et al. 2015)
|
11. |
Ca2+ requirements for Long-Term Depression in Purkinje Cells (Criseida Zamora et al 2018)
|
12. |
Calcium dynamics depend on dendritic diameters (Anwar et al. 2014)
|
13. |
Cancelling redundant input in ELL pyramidal cells (Bol et al. 2011)
|
14. |
Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)
|
15. |
Cerebellar gain and timing control model (Yamazaki & Tanaka 2007)(Yamazaki & Nagao 2012)
|
16. |
Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
|
17. |
Cerebellar Golgi cells, dendritic processing, and synaptic plasticity (Masoli et al 2020)
|
18. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
19. |
Cerebellar granule cell (Masoli et al 2020)
|
20. |
Cerebellar Model for the Optokinetic Response (Kim and Lim 2021)
|
21. |
Cerebellar nuclear neuron (Sudhakar et al., 2015)
|
22. |
Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
|
23. |
Cerebellar stellate cells: changes in threshold, latency and frequency of firing (Mitry et al 2020)
|
24. |
Cerebellum granule cell FHF (Dover et al. 2016)
|
25. |
Cerebellum Purkinje cell: dendritic ion channels activated by climbing fibre (Ait Ouares et al 2019)
|
26. |
Complex dynamics: reproducing Golgi cell electroresponsiveness (Geminiani et al 2018, 2019ab)
|
27. |
Computational model of cerebellar tDCS (Zhang et al., 2021)
|
28. |
Distributed cerebellar plasticity implements adaptable gain control (Garrido et al., 2013)
|
29. |
Effect of voltage sensitive fluorescent proteins on neuronal excitability (Akemann et al. 2009)
|
30. |
Fast convergence of cerebellar learning (Luque et al. 2015)
|
31. |
Information transmission in cerebellar granule cell models (Rossert et al. 2014)
|
32. |
Inverse stochastic resonance of cerebellar Purkinje cell (Buchin et al. 2016)
|
33. |
Logarithmic distributions prove that intrinsic learning is Hebbian (Scheler 2017)
|
34. |
Model of cerebellar parallel fiber-Purkinje cell LTD and LTP (Gallimore et al 2018)
|
35. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
36. |
Molecular layer interneurons in cerebellum encode valence in associative learning (Ma et al 2020)
|
37. |
Multicompartmental cerebellar granule cell model (Diwakar et al. 2009)
|
38. |
Multiplexed coding in Purkinje neuron dendrites (Zang and De Schutter 2021)
|
39. |
Network model of movement disorders (Yousif et al 2020)
|
40. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
41. |
Neural modeling of an internal clock (Yamazaki and Tanaka 2008)
|
42. |
Parallel STEPS: Large scale stochastic spatial reaction-diffusion simulat. (Chen & De Schutter 2017)
|
43. |
Purkinje cell: Synaptic activation predicts voltage control of burst-pause (Masoli & D'Angelo 2017)
|
44. |
Purkinje neuron network (Zang et al. 2020)
|
45. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
46. |
Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
|
47. |
Sparse connectivity is required for decorrelation, pattern separation (Cayco-Gajic et al 2017)
|
48. |
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
|
49. |
Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013)
|
50. |
Tonic activation of extrasynaptic NMDA-R promotes bistability (Gall & Dupont 2020)
|
51. |
Using Strahler's analysis to reduce realistic models (Marasco et al, 2013)
|
52. |
Vestibulo-Ocular Reflex model in Matlab (Clopath at al. 2014)
|
53. |
Voltage- and Branch-specific Climbing Fiber Responses in Purkinje Cells (Zang et al 2018)
|