Models that contain the Cell : Spinal cord renshaw cell

(Interneurons that inhibit their parent motorneuron and other nearby motorneurons.)
Re-display model names without descriptions
    Models   Description
1.  A state-space model to quantify common input to motor neurons (Feeney et al 2017)
"... We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions."
2.  Simulation system of spinal cord motor nuclei and assoc. nerves and muscles (Cisi and Kohn 2008)
A Web-based simulation system of the spinal cord circuitry responsible for muscle control is described. The simulator employs two-compartment motoneuron models for S, FR and FF types, with synaptic inputs acting through conductance variations. Four motoneuron pools with their associated interneurons are represented in the simulator, with the possibility of inclusion of more than 2,000 neurons and 2,000,000 synapses. ... Inputs to the motoneuron pool come from populations of interneurons (Ia reciprocal inhibitory interneurons, Ib interneurons, and Renshaw cells) and from stochastic point processes associated with descending tracts. ... The generation of the H-reflex by the Ia-motoneuron pool system and its modulation by spinal cord interneurons is included in the simulation system.

Re-display model names without descriptions