Models that contain the Model Concept : Maintenance

(Maintenance as regards to preservation of memories, synapses, synapse strength.)
Re-display model names without descriptions
    Models   Description
1.  LTP in cerebellar mossy fiber-granule cell synapses (Saftenku 2002)
We simulated synaptic transmission and modified a simple model of long-term potentiation (LTP) and long-term depression (LTD) in order to describe long-term plasticity related changes in cerebellar mossy fiber-granule cell synapses. In our model, protein autophosphorylation, leading to the maintenance of long-term plasticity, is controlled by Ca2+ entry through the NMDA receptor channels. The observed nonlinearity in the development of long-term changes of EPSP in granule cells is explained by the difference in the rate constants of two independent autocatalytic processes.
2.  Neural model of two-interval discrimination (Machens et al 2005)
Two-interval discrimination involves comparison of two stimuli that are presented at different times. It has three phases: loading, in which the first stimulus is perceived and stored in working memory; maintenance of working memory; decision making, in which the second stimulus is perceived and compared with the first. In behaving monkeys, each phase is associated with characteristic firing activity of neurons in the prefrontal cortex. This model implements both working memory and decision making with a mutual inhibition network that reproduces all three phases of two-interval discrimination. Machens, C.K., Romo, R., and Brody, C.D. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307:1121-1124, 2005.
3.  Tag Trigger Consolidation (Clopath and Ziegler et al. 2008)
This model simulates different phases of LTP/D, i.e. the induction or early phase, the setting of synaptic tags, a trigger process for protein synthesis, and a slow transition leading to synaptic consolidation namely the late phase of synaptic plasticity. The model explains a large body of experimental data on synaptic tagging and capture, cross-tagging, and the late phases of LTP and LTD. Moreover, the model accounts for the dependence of LTP and LTD induction on voltage and presynaptic stimulation frequency.

Re-display model names without descriptions