Models that contain the Receptor : IP3

(Inositol trisphosphate receptor)
Re-display model names without descriptions
    Models   Description
1.  A mathematical model of a neurovascular unit (Dormanns et al 2015, 2016) (Farrs & David 2011)
Here a lumped parameter numerical model of a neurovascular unit is presented, representing an intercellular communication system based on ion exchange through pumps and channels between neurons, astrocytes, smooth muscle cells, endothelial cells, and the spaces between these cells: the synaptic cleft between the neuron and astrocyte, the perivascular space between the astrocyte and SMC, and the extracellular space surrounding the cells. The model contains various cellular and chemical pathways such as potassium, astrocytic calcium, and nitric oxide. The model is able to simulate neurovascular coupling, the process characterised by an increase in neuronal activity followed by a rapid dilation of local blood vessels and hence increased blood supply providing oxygen and glucose to cells in need.
2.  A mathematical model of evoked calcium dynamics in astrocytes (Handy et al 2017)
" ...Here we present a qualitative analysis of a recent mathematical model of astrocyte calcium responses. We show how the major response types are generated in the model as a result of the underlying bifurcation structure. By varying key channel parameters, mimicking blockers used by experimentalists, we manipulate this underlying bifurcation structure and predict how the distributions of responses can change. We find that store-operated calcium channels, plasma membrane bound channels with little activity during calcium transients, have a surprisingly strong effect, underscoring the importance of considering these channels in both experiments and mathematical settings. ..."
3.  A model for pituitary GH(3) lactotroph (Wu and Chang 2005)
The ATP-sensitive K(+) (K(ATP)) channels are composed of sulfonylurea receptor and inwardly rectifying K(+) channel (Kir6.2) subunit. These channels are regulated by intracellular ADP/ATP ratio and play a role in cellular metabolism. ... The objective of this study was to determine whether Diethyl pyrocarbonate (DEPC) modifies K(ATP)-channel activity in pituitary GH(3) cells. ... Simulation studies also demonstrated that the increased conductance of K(ATP)-channels used to mimic DEPC actions reduced the frequency of spontaneous action potentials and fluctuation of intracellular Ca(2+). The results indicate that chemical modification with DEPC enhances K(ATP)-channel activity and influences functional activities of pituitary GH(3) cells. See paper for more and details.
4.  A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (CellML)
" ... We developed a firing rate code model to incorporate known electrophysiological properties of SCN (suprachiasmatic nucleus) pacemaker cells, including circadian dependent changes in membrane voltage and ion conductances. Calcium dynamics were included in the model as the putative link between electrical firing and gene expression. Individual ion currents exhibited oscillatory patterns matching experimental data both in current levels and phase relationships. VIP and GABA neurotransmitters, which encode synaptic signals across the SCN, were found to play critical roles in daily oscillations of membrane excitability and gene expression. Blocking various mechanisms of intracellular calcium accumulation by simulated pharmacological agents (nimodipine, IP3- and ryanodine-blockers) reproduced experimentally observed trends in firing rate dynamics and core-clock gene transcription. The intracellular calcium concentration was shown to regulate diverse circadian processes such as firing frequency, gene expression and system periodicity. The model predicted a direct relationship between firing frequency and gene expression amplitudes, demonstrated the importance of intracellular pathways for single cell behavior and provided a novel multiscale framework which captured characteristics of the SCN at both the electrophysiological and gene regulatory levels."
5.  A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (SBML)
" ... We developed a firing rate code model to incorporate known electrophysiological properties of SCN (suprachiasmatic nucleus) pacemaker cells, including circadian dependent changes in membrane voltage and ion conductances. Calcium dynamics were included in the model as the putative link between electrical firing and gene expression. Individual ion currents exhibited oscillatory patterns matching experimental data both in current levels and phase relationships. VIP and GABA neurotransmitters, which encode synaptic signals across the SCN, were found to play critical roles in daily oscillations of membrane excitability and gene expression. Blocking various mechanisms of intracellular calcium accumulation by simulated pharmacological agents (nimodipine, IP3- and ryanodine-blockers) reproduced experimentally observed trends in firing rate dynamics and core-clock gene transcription. The intracellular calcium concentration was shown to regulate diverse circadian processes such as firing frequency, gene expression and system periodicity. The model predicted a direct relationship between firing frequency and gene expression amplitudes, demonstrated the importance of intracellular pathways for single cell behavior and provided a novel multiscale framework which captured characteristics of the SCN at both the electrophysiological and gene regulatory levels."
6.  A synapse model for developing somatosensory cortex (Manninen et al 2020)
We developed a model for an L4-L2/3 synapse in somatosensory cortex to study the role of astrocytes in modulation of t-LTD. Our model includes the one-compartmental presynaptic L4 spiny stellate cell, two-compartmental (soma and dendrite) postsynaptic L2/3 pyramidal cell, and one-compartmental fine astrocyte process.
7.  Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
8.  Ca2+ oscillations in single astrocytes (Lavrentovich and Hemkin 2008) (python) (Manninen et al 2017)
We tested the reproducibility and comparability of four astrocyte models (Manninen, Havela, Linne, 2017). Model by Lavrentovich and Hemkin (2008) was one of them. We implemented and ran the model by Lavrentovich and Hemkin (2008) using Jupyter Notebook. Model code produces results of Figure 1 in Manninen, Havela, Linne (2017).
9.  Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up and down states.
10.  Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
A morphologically realistic, conductance-based model equipped with kinetic schemes that govern several calcium signalling modules and pathways in CA1 pyramidal neurons
11.  Calcium waves in neuroblastoma cells (Fink et al. 2000)
Uses a model of IP3-mediated release of Ca from endoplasmic reticulum (ER) to study how initiation and propagation of Ca waves are affected by cell geometry, spatial distributions of ER and IP3 generation, and diffusion of Ca and mobile buffer.
12.  Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)
The endocannabinoid (eCB) system is considered involved in synaptic depression. Recent reports have also linked eCBs to synaptic potentiation. However it is not known how eCB signaling may support such bidirectionality. To question the mechanisms of this phenomena in spike-timing dependent plasticity (STDP) at corticostriatal synapses, we combined electrophysiology experiments with biophysical modeling. We demonstrate that STDP is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Therefore, just like neurotransmitters glutamate or GABA, eCB form a bidirectional system.
13.  Glutamate-evoked Ca2+ oscillations in single astrocytes (De Pitta et al. 2009) (Manninen et al 2017)
We tested the reproducibility and comparability of four astrocyte models (Manninen, Havela, Linne, 2017). Model by De Pitta et al. (2009) was one of them. We implemented and ran the model by De Pitta et al. (2009) using Jupyter Notebook. Model code produces results of Figure 1 and Figures 3-5 in Manninen, Havela, Linne (2017).
14.  Glutamate-evoked Ca2+ oscillations in single astrocytes (Modified from Dupont et al. 2011)
We tested the reproducibility and comparability of four astrocyte models (Manninen, Havela, Linne, 2017). Model by Dupont et al. (2011) was one of them, but we had to modify the model to get more similar results as in the original publication. We implemented and ran the modified model using Jupyter Notebook. Model code produces results of Figure 1 and Figures 3-5 in Manninen, Havela, Linne (2017).
15.  IP3R model comparison (Hituri and Linne 2013)
In this study, four models of IP3R (Othmer and Tang, 1993; Dawson et al., 2003; Fraiman and Dawson, 2004; Doi et al., 2005) were selected among many to examine their behavior and compare them with experimental data available in literature. The provided MATLAB script (run_IP3R_P0.m) will run the simulations and plot Figure 2A in the paper.
16.  Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)
"... Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS) and an intrinsic bursting (IB) model neuron. ... Collectively, our results pinpoint to specific features of the neuronal response to a given stimulus that code for its ability to induce persistent activity and predict differential roles of RS and IB neurons in persistent activity expression. "
17.  Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
The sea slug Hermissenda learns to associate light and hair cell stimulation, but not when the stimuli are temporally uncorrelated...These issues were addressed using a multi-compartmental computer model of phototransduction, calcium dynamics, and ionic currents of the Hermissenda photoreceptor...simulations show that a potassium leak channel, which closes with an increase in calcium, is required to produce both the untrained LLD and the enhanced LLD due to the decrease in voltage dependent potassium currents.
18.  Pancreatic Beta Cell signalling pathways (Fridlyand & Philipson 2016) (MATLAB)
This is a 3rd party implementation of Fridlyand & Philipson 2016 who's abstract begins "Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. ..."
19.  PreBotzinger Complex inspiratory neuron with NaP and CAN currents (Park and Rubin 2013)
We have built on earlier models to develop a single-compartment Hodgkin-Huxley type model incorporating NaP and CAN currents, both of which can play important roles in bursting of inspiratory neurons in the PreBotzinger Complex of the mammalian respiratory brain stem. The model tracks the evolution of membrane potential, related (in)activation variables, calcium concentration, and available fraction of IP3 channels. The model can produce several types of bursting, presented and analyzed from a dynamical systems perspective in our paper.
20.  Python-based toolkits for STEPS (Chen and De Schutter 2014)
We provide two examples to demonstrate the use of the geometry preparation toolkit and the visualization tool for STEPS, described in Chen W and De Schutter E (2014). The package contains two folders, each for an individual example. The ip3r folder contains mesh data and simulation scripts for the IP3 receptor model described in the paper, and the AD folder contains data and scripts for Anomalous Diffusion simulation. Please read the instruction.pdf file within the package for detail instructions.
21.  Reproducibility and comparability of models for astrocyte Ca2+ excitability (Manninen et al 2017)
We tested the reproducibility and comparability of four astrocyte models (Manninen, Havela, Linne, 2017). We implemented and ran the python models using Jupyter Notebook. Model code produces results of Figure 1 and Figures 3-5 and partly Figure 2 in Manninen, Havela, Linne (2017).
22.  Simulation of calcium signaling in fine astrocytic processes (Denizot et al 2019)
This model corresponds to the model presented in Denizot et al, 2019. The model indicates that the frequency of calcium signals crucially depends on the spatial organization of the IP3R channels, including their clustering and co-localization with the other sources of calcium influx to the cytosol. Spontaneous calcium signals generated by the model with realistic PAPs volume and calcium concentration successfully reproduce spontaneous calcium transients that we measured in calcium micro-domains with confocal microscopy. To our knowledge, this model is the first model suited to the investigation of spontaneous calcium dynamics in fine astrocytic processes, a crucial step towards a better understanding of the spatio-temporal integration of astrocyte signals in response to neuronal activity.
23.  Spike timing detection in different forms of LTD (Doi et al 2005)
To understand the spike-timing detection mechanisms in cerebellar long-term depression (LTD), we developed a kinetic model of Ca dynamics within a Purkinje dendritic spine. In our kinetic simulation, IP3 was first produced via the metabotropic pathway of parallel fiber (PF) inputs, and the Ca influx in response to the climbing fiber (CF) input triggered regenerative Ca-induced Ca release from the internal stores via the IP3 receptors activated by the increased IP3. The delay in IP3 increase caused by the PF metabotropic pathway generated the optimal PF–CF interval. The Ca dynamics revealed a threshold for large Ca2 release that decreased as IP3 increased, and it coherently explained the different forms of LTD. See paper for more and details.
24.  Spontaneous calcium oscillations in astrocytes (Lavrentovich and Hemkin 2008)
" ... We propose here a mathematical model of how spontaneous Ca2+ oscillations arise in astrocytes. This model uses the calcium-induced calcium release and inositol cross-coupling mechanisms coupled with a receptor-independent method for producing inositol (1,4,5)-trisphosphate as the heart of the model. By computationally mimicking experimental constraints we have found that this model provides results that are qualitatively similar to experiment."
25.  Spontaneous calcium oscillations in single astrocytes (Riera et al. 2011) (Manninen et al 2017)
We tested the reproducibility and comparability of four astrocyte models (Manninen, Havela, Linne, 2017). Model by Riera et al. (2011) was one of them. We implemented and ran the model by Riera et al. (2011) using Jupyter Notebook. Model codes produce results of Figures 1 and 2 in Manninen, Havela, Linne (2017).

Re-display model names without descriptions