Models that contain the Implementer : Anderson, Warren D [warren.anderson at jefferson.edu]

Re-display model names without descriptions
    Models   Description
1.  Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015)
" ... We evaluated the impact of molecular variability in the expression of cell signaling components and ion channels on electrophysiological excitability and neuromodulation. We employed a computational approach that integrated neuropeptide receptor-mediated signaling with electrophysiology. We simulated a population of neurons in which expression levels of a neuropeptide receptor and multiple ion channels were simultaneously varied within a physiological range. We analyzed the effects of variation on the electrophysiological response to a neuropeptide stimulus. ..."
2.  Microglial cytokine network (Anderson et al., 2015)
This is an ODE model of autocrine/paracrine microglial cytokine interactions. Simulations include analyses of neuroinflammation mechanisms in the context of adaptation and tolerance to LPS.
3.  Model of AngII signaling and membrane electrophysiology (Makadia, Anderson, Fey et al., 2015)
We developed a novel multiscale model to bridge neuropeptide receptor-activated signaling pathway with membrane electrophysiology. The model studies the effects of Angiotensin II (AngII) on neuronal excitability changes mediated by signaling dynamics and downstream phosphorylation of ion channels. The multiscale model was implemented as a set of ordinary differential equations solved using the ode15s solver in Matlab (Mathworks, USA). The signaling reactions were modeled with either mass-action or Michaelis--Menten kinetics and ion channel electrophysiology was modeled according to the Hodgkin-Huxley formalism. These models were initially validated against their respective data domains independently and were integrated to develop a multiscale model of signaling and electrophysiology.

Re-display model names without descriptions